Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chemistry ; : e202402145, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869100

RESUMO

Boron subphthalocyanines with chloride and fluoride axial ligands and three antimony complexes chelated by corroles that differ in size and electron-richness were examined as electrocatalysts for reduction of protons to hydrogen. Experiment- and computation-based investigations revealed that all redox events are ligand-centered and that the meso-C of the corroles and the peripheral N atoms of the subphthalocyanines are the largely preferred proton-binding sites.

2.
J Am Chem Soc ; 145(23): 12429-12445, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255283

RESUMO

The renaissance in corrole chemistry is strongly correlated with synthetic breakthroughs that started in 1999, regarding the one-pot rather than multistep syntheses of this heme-like N4 macrocycle. This largely improved synthetic accessibility allowed for technological advances wherein the corresponding metal complexes have since been introduced as key elements. Great emphasis was devoted to the elucidation of the unique fundamental features that distinguish corrole ligands, among them outstanding electron donation (σ by the N atoms and π by the macrocycle) to transition metals chelated by them. Such investigations remain crucial for enabling the by-demand tuning of metallocorrole properties for distinctly different applications. These range from the catalysis of organic reactions, through bioimaging and disease prevention/treatment strategies, to photo- and electrocatalysis for clean energy. Surveyed are the original reports that impacted these developments, together with some of the most recent advances.

3.
Chempluschem ; 88(3): e202200260, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623940

RESUMO

In this work, we assemble amphiphilic iron(III) corroles at air-water interfaces into well-defined quasi-two-dimensional molecular monolayers and theirs stacks for sensing of nitric oxide (NO). For this purpose, we use the Langmuir-Blodgett (LB) technique, which allows varying the packing density of iron(III) corroles anchored to the aqueous subphase via one molecular side. The stacks of ten down to three molecular monolayers on the front and back sides of the substrates are sufficiently optically dense to detect NO binding to the layers photometrically. This sensing with few layers demonstrates the potential for electronic detection, where very thin surface functionalizations enable efficient electronic communication between the layer and the (semi)conductor. Despite increasing optical densities, the spectral responses to NO exposure become smaller with increasing packing density until the collapse point of the monolayers is reached. This demonstrates that the highest molecular efficiency for binding and detection of NO is achieved at the smallest packing densities. This finding is relevant to all molecular sensor films with axial binding of analytes to the sensor molecules and demonstrates the advantage of sensor molecule assembly into monolayers on water-air interfaces using the LB technique.

4.
Chem Soc Rev ; 52(2): 573-600, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36537842

RESUMO

Corroles are synthetic porphyrin analogs that contain one meso carbon atom lesser and bear a trianionic N4 metal-chelating core. They require in-depth preparative chemistry, demonstrate unique coordination chemistry and have impressive and diverse physical properties, and these are commonly compared to their respective porphyrins. The corrole's macrocyclic system is inherently electron rich and chelates metal ions in a more compact, less symmetric tetranitrogen cavity compared to that of porphyrins. Herein, we cover the highlights of the corrole research through the decades by first reviewing, in a chronological sense, multi-step syntheses; some routes have since been discontinued. This is followed by describing post-functionalization of already formed corroles via reactions performed on either the macrocycle's periphery or the inner nitrogen atoms or on the existing substituents. We do also mention milestones in literature reviewing, publication of encyclopedias, and the creation of professional organizations and conferences (ICPP) which make up the corrole/porphyrin research landscape. Also highlighted are still existing challenges and future perspectives.

5.
Inorg Chem ; 61(51): 20725-20733, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36512733

RESUMO

Conjugated arrays composed of corrole macrocycles are increasingly more common, but their chemistry still lags behind that of their porphyrin counterparts. Here, we report on the insertion of iron(III) into a ß,ß-fused corrole dimer and on the electronic effects that this redox active metal center has on the already rich coordination chemistry of [H3tpfc] COT, where COT = cyclo-octatetraene and tpfc = tris(pentafluorophenyl)corrole. Synthetic manipulations were performed for the isolation and full characterization of both the 5-coordinate [FeIIItpfc(py)]2COT and 6-coordinate [FeIIItpfc(py)2]2COT, with one and two axial pyridine ligands per metal, respectively. X-Ray crystallography reveals a dome-shaped structure for [FeIIItpfc(py)]2COT and a perfectly planar geometry which (surprisingly at first) is also characterized by shorter Fe-N (corrole) and Fe-N (pyridine) distances. Computational investigations clarify that the structural phenomena are due to a change in the iron(III) spin state from intermediate (S = 3/2) to low (S = 1/2), and that both the 5- and 6-coordinated complexes are enthalpically favored. Yet, in contrast to iron(III) porphyrins, the formation enthalpy for the coordination of the first pyridine to Fe(III) corrole is more negative than that of the second pyridine coordination. Possible interactions between the two corrole subunits and the chelated iron ions were examined by UV-Vis spectroscopy, electrochemical techniques, and density functional theory (DFT). The large differences in the electronic spectra of the dimer relative to the monomer are concluded to be due to a reduced electronic gap, owing to the extensive electron delocalization through the fusing bridge. A cathodic sweep for the dimer discloses two redox processes, separated by 230 mV. The DFT self-consistent charge density for the neutral and cationic states (1- and 2-electron oxidized) reveals that the holes are localized on the macrocycle. A different picture emerges from the reduction process, where both the electrochemistry and the calculated charge density point toward two consecutive electron transfers with similar energetics, indicative of very weak electron communication between the two redox active iron(III) sites. The binuclear complex was determined to be a much better catalyst for the electrochemical hydrogen evolution reaction (HER) than the analogous mononuclear corrole.

6.
J Phys Chem B ; 125(37): 10571-10577, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34506146

RESUMO

Photoinduced electron transfer systems can mimic certain features of natural photosynthetic reaction centers, which are crucial for solar energy production. Among other tetra-pyrroles, the versatile chemical and photophysical properties of corroles make them very promising donors applicable in donor-acceptor complexes. Here, we present a first comprehensive study of ultrafast photoinduced electron transfer in a self-assembling sulfonated aluminum corrole-methylviologen complex combining visible and mid-IR transient absorption spectroscopy. The noncovalent D-A association of the corrole-methylviologen complex has the great advantage that photoinduced charge separation becomes possible even though the back electron transfer (BET) rate is large. Initial forward electron transfer from corrole to methylviologen is observed on an ∼130 fs time scale. Subsequent back electron transfer takes place with τBET = (1.8 ± 0.5) ps, revealing very complex relaxation dynamics. Direct probing in the mid-IR allows us to unravel the back electron transfer and cooling dynamics/electronic reorganization. Upon tracing the dynamics of the methylviologen-radical marker band at 1640 cm-1 and the C═C stretching of corrole at around 1500 cm-1, we observe that large amounts of excess energy survive the back transfer, leading to the formation of hot ground state absorption. A closer examination of the signal after 300 ps, surviving the back transfer, exhibits a charge-separation yield of 10-15%.


Assuntos
Alumínio , Elétrons , Transporte de Elétrons , Paraquat , Porfirinas
7.
Angew Chem Int Ed Engl ; 60(47): 25097-25103, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523789

RESUMO

Corroles, macrocycles that owe their name to the cobalt-chelating prosthetic group of vitamin B12 and share numerous features with the iron-chelating porphyrin present in heme proteins/enzymes, constantly cross new boundaries ever since stable derivatives became easily accessible. Particularly important is the increasing utilization of corroles and the corresponding metal complexes for the benefit of mankind, in terms of new drug candidates for treating various diseases and as catalysts for sustainable energy relevant processes. One challenge is to gain access to the plain macrocycle, as to allow for full elucidation of the most fundamental properties of corroles. We have obtained the substituent-free corrole by several surprising and conceptually different pathways. Selected features of the corresponding metal complexes are illuminated, for pointing towards unique phenomena that are anticipated to largely expand the horizon regarding their utilization for contemporary catalysis.

8.
iScience ; 24(8): 102924, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430813

RESUMO

Stable complexes with terminal triply bound metal-oxygen bonds are usually not considered as valuable catalysts for the hydrogen evolution reaction (HER). We now report the preparation of three conceptually different (oxo)molybdenum(V) corroles for testing if proton-assisted 2-electron reduction will lead to hyper-reactive molybdenum(III) capable of converting protons to hydrogen gas. The upto 670 mV differences in the [(oxo)Mo(IV)]-/[(oxo)Mo(III)]-2 redox potentials of the dissolved complexes came into effect by the catalytic onset potential for proton reduction thereby, significantly earlier than their reduction process in the absence of acids, but the two more promising complexes were not stable at practical conditions. Under heterogeneous conditions, the smallest and most electron-withdrawing catalyst did excel by all relevant criteria, including a 97% Faradaic efficiency for catalyzing HER from acidic water. This suggests complexes based on molybdenum, the only sustainable heavy transition metal, as catalysts for other yet unexplored green-energy-relevant processes.

9.
Inorg Chem ; 60(12): 8442-8446, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110813

RESUMO

A set of gold corrole complexes containing four different ß-substituent groups (Br/I/CF3), namely, 4Br-Au, 4I-Au, and 4CF3-Au, were investigated; all showed room temperature phosphorescence. The phosphorescence quantum yields of the corroles were determined using tetraphenylporphyrin as a reference: Φph (4I-Au, 0.75%) > Φph (4Br-Au, 0.64%) > Φph (4CF3-Au, 0.38%). 4CF3-Au exhibited near-IR emission (858 nm, aerobic); absorbance intensity for the Q-band was higher than that for the Soret band. Complex 4I-Au showed a longer phosphorescence lifetime (82 µs) compared to those of 4Br-Au (53 µs) and 4CF3-Au (28 µs; N2, tol). Thermally activated delayed fluorescence (TADF) emission of 4I/Br-Au complexes was observed: stronger emission intensity correlated with increasing temperature. Good negative correlations for 4I/Br-Au were observed between the Soret band absorption energy and the solvent polarizability: excited states of 4I/Br-Au are more polar than their ground states. TD-DFT calculations revealed very fast intersystem crossing (ISC) rate constants, 2.20 × 1012 s-1 (4CF3-Au) > 1.96 × 1011 s-1 (4Br-Au) > 1.15 × 1011 s-1 (4I-Au), and importantly, the reverse intersystem crossing (rISC) rate constants are determined as 1.68 × 107 s-1 (4I-Au) > 2.40 × 103 s-1 (4Br-Au) ≫ 8.09 × 10-8 s-1 (4CF3-Au). The exceptionally low rISC rate constant of 4CF3-Au is attributed to its more steric and deformed structure bearing a larger energy gap between the S1 and T1 states.

10.
J Am Chem Soc ; 143(25): 9450-9460, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34014656

RESUMO

Chlorophyll special pairs in photosynthetic reaction centers function as both exciton acceptors and primary electron donors. Although the macrocyclic natural pigments contain Mg(II), the central metal in most synthetic analogs is Zn(II). Here we report that insertion of either Al(III) or Ga(III) into an imidazole-substituted corrole affords an exceptionally robust photoactive dimer. Notably, attractive electronic interactions between dimer subunits are relatively strong, as documented by signature changes in NMR and electronic absorption spectra, as well as by cyclic voltammetry, where two well-separated reversible redox couples were observed. EPR spectra of one-electron oxidized dimers closely mimic those of native special pairs, and strong through-space interactions between corrole subunits inferred from spectroscopic and electrochemical data are further supported by crystal structure analyses (3 Å interplanar distances, 5 Å lateral shifts, and 6 Å metal to metal distances).


Assuntos
Materiais Biomiméticos/química , Imidazóis/química , Metaloporfirinas/química , Alumínio/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/efeitos da radiação , Clorofila/química , Elétrons , Gálio/química , Imidazóis/síntese química , Imidazóis/efeitos da radiação , Luz , Metaloporfirinas/síntese química , Metaloporfirinas/efeitos da radiação , Estrutura Molecular , Oxirredução
11.
Angew Chem Int Ed Engl ; 60(23): 12829-12834, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33817919

RESUMO

Heme-like metal-chelating macrocycles, including expanded and contracted porphyrins, are of everlasting interest as drug candidates for numerous diseases. Still, all reported corrole derivatives (and most other heme analogues) do not fulfill the most basic standards expected for oral drug administration: a combination of low molecular weight and reasonable water solubility. We now disclose a very straightforward synthetic method that relies on surprisingly facile trifluoromethyl hydrolysis for gaining access to a new class of corroles that do satisfy all druglikeness criteria. The relevance is briefly exemplified for the iron corroles by demonstrating the ability to affect their association with plasma proteins and their performance for catalase-like decomposition of hydrogen peroxide.


Assuntos
Complexos de Coordenação/química , Hidrocarbonetos Fluorados/química , Hidrólise , Estrutura Molecular
12.
J Am Chem Soc ; 142(50): 21040-21049, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259190

RESUMO

Considering the importance of water splitting as the best solution for clean and renewable energy, the worldwide efforts for development of increasingly active molecular water oxidation catalysts must be accompanied by studies that focus on elucidating the mode of actions and catalytic pathways. One crucial challenge remains the elucidation of the factors that determine the selectivity of water oxidation by the desired 4e-/4H+ pathway that leads to O2 rather than by 2e-/2H+ to H2O2. We now show that water oxidation with the cobalt-corrole CoBr8 as electrocatalyst affords H2O2 as the main product in homogeneous solutions, while heterogeneous water oxidation by the same catalyst leads exclusively to oxygen. Experimental and computation-based investigations of the species formed during the process uncover the formation of a Co(III)-superoxide intermediate and its preceding high-valent Co-oxyl complex. The competition between the base-catalyzed hydrolysis of Co(III)-hydroperoxide [Co(III)-OOH]- to release H2O2 and the electrochemical oxidation of the same to release O2 via [Co(III)-O2•]- is identified as the key step determining the selectivity of water oxidation.

13.
Org Lett ; 22(8): 3119-3122, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32227962

RESUMO

Separate focus on the oligomerization and oxidative cyclization steps required for the synthesis of 5,10,15-tris(trifluoromethyl)corrole revealed [bis(trifluoroacetoxy)iodo]benzene (PIFA) as a superior alternative oxidant. Under optimized conditions, the pure free-base corrole was obtained with a 6-fold increase in chemical yield and an 11-fold rise in isolated material per synthesis. The corresponding gallium(III) and manganese(III) complexes were isolated by adding the appropriate metal salt prior to corrole purification.


Assuntos
Porfirinas/síntese química , Gálio/química , Manganês/química , Estrutura Molecular , Compostos Organometálicos/química , Porfirinas/química , Porfirinas/isolamento & purificação
14.
Chem Commun (Camb) ; 55(85): 12789-12792, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31593194

RESUMO

We report the utility of water-soluble corroles and also protein-coated nanoparticles (NPs) of lipophilic corroles as potent candidates for sonodynamic therapy (SDT), through the detection and quantification of the singlet oxygen that is produced by the ultrasonic irradiation of their aqueous solutions. Preliminary results on a cancer cell line provide evidence for the true utility of the NPs for SDT.

15.
Chem Sci ; 10(29): 7091-7103, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31588277

RESUMO

Efficient triplet photosensitizers are important for fundamental photochemical studies and applications such as triplet-triplet annihilation upconversion (TTA UC), photoredox catalytic organic reactions and photovoltaics. We now report a series of phosphorus corrole compounds as efficient visible light-harvesting metal-free triplet photosensitizers. While the heavy-atom-free phosphorus corroles show absorption in the visible spectral region (centered at 573 nm) and have a decent triplet state quantum yield (Φ Δ = 49%), iodo-substitution on the corrole core induces red-shifted absorption (589 nm) and improves intersystem crossing significantly (Φ Δ = 67%). Nanosecond transient absorption spectra confirm triplet state formation upon photoexcitation (τ T = 312 µs) and the iodinated derivatives also display near IR phosphorescence in fluid solution at room temperature (λ em = 796 nm, τ p = 412 µs). Both singlet oxygen (1O2) and superoxide radical anions (O2 -˙) may be produced with the phosphorus corroles, which are competent photocatalysts for the oxidative coupling of benzylamine (the Aza Henry reaction). Very efficient TTA UC was observed with the phosphorus corroles as triplet photosensitizers and perylene as the triplet acceptor, with upconversion quantum yields of up to Φ UC = 38.9% (a factor of 2 was used in the equation) and a very large anti-Stokes effect of 0.5 eV.

16.
Chem Commun (Camb) ; 55(79): 11912-11915, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31528909

RESUMO

Cobalt and iron complexes of corroles with tyrosine-like proton-transfer-relay moieties in proximity to the metal center have been prepared and fully characterized. The (nitrosyl)iron complex performs very well as an electrocatalyst for the reduction of CO2 to CO.

17.
Dalton Trans ; 48(32): 12279-12286, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31342035

RESUMO

Tris- and tetrakis-ß-trifluoromethylated gallium (3CF3-Ga, 4CF3-Ga) and aluminum (3CF3-Al, 4CF3-Al) corrole systems were synthesized by a facile "one-pot" approach from the respective tri- and tetra-iodo starting compounds using the FSO2CF2CO2Me reagent. The isolated 5,10,15-(tris-pentafluorophenyl)corrole-based compounds set the groundwork for another important ß-substituent study in inorganic photocatalysis. As seen previously, -CF3 group substitution leads to red shifts in both the absorption and emission spectra compared to their unsubstituted counterparts (X. Zhan, et al., Inorg. Chem., 2019, 58, 6184-6198). All CF3-substituted corrole complexes showed strong fluorescence; 3CF3-Al possessed the highest fluorescence quantum yield (0.71) among these compounds. The photocatalytic production of bromophenol by way of these photosensitizing complexes was studied demonstrating that tris-trifluoromethylation is an important substitution class, especially when Ga3+ is present (experimental TON value in parentheses): 3CF3-Ga (192) > 4CF3-Ga (146) > 3CF3-Al (130) > 4CF3-Al (56) > 1-Ga (43) > 1-Al (18). The catalytic performance (turn-over number, TON) for benzylbromide formation (from toluene) was found to be: 3CF3-Ga (225) > 1-Ga (138) > 3CF3-Al (130) > 4CF3-Ga (126) > 1-Al (95) > 4CF3-Al (89); in these trials, benzaldehyde was also detected as a product in which 3CF3-Ga outperforms the other compounds (TON = 109). The tetra-CF3-substituted 4CF3-Ga and 4CF3-Al species exhibit a dramatic formal positive shift of 116 mV and 126 mV per [CF3] group, respectively, compared to the unsubstituted parent species 1-Ga and 1-Al. However, the absorbance values (λabs = 400 nm) of these corrole complexes (all equally concentrated: 4.0 × 10-6 M) were 3CF3-Al (0.23) > 3CF3-Ga (0.22) > 1-Al (0.21) > 1-Ga (0.20) > 4CF3-Al (0.19) > 4CF3-Ga (0.15), which helps rationalize why 3CF3-Ga performs the best among these catalysts. These new photosensitizers were carefully characterized by 1H and 19F NMR spectroscopy to help verify the number and position (symmetry) of the CF3 groups; 3CF3-Ga and 3I-Al were structurally characterized. Distortions in the corrole macrocycle imposed by the multiple ß-substitution were quantified.

18.
Inorg Chem ; 58(9): 6184-6198, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002247

RESUMO

An eight-member series of CF3-substituted difluorophosphorus corroles was prepared for establishing a structure-activity profile of these high-potential photosensitizers. It consisted of preparing all four possible isomers of the monosubstituted corrole and complexes with 2-, 3-, 4-, and 5-CF3 groups on the macrocycle's periphery. The synthetic pathway to these CF3-substituted derivatives, beginning with (tpfc)PF2, involves two different initial routes: (i) direct electrophilic CF3 incorporation using FSO2CF2CO2Me and copper iodide, or (ii) bromination to achieve the 2,3,8,17,18-pentabrominated compound using excess bromine in methanol. Crystallographic investigations revealed that distortion of the original planar macrocycle is evident even in the monosubstituted case and that it becomes truly severe for the penta-CF3-substituted derivative 5. There is a shift in redox potentials of about 193 mV per -CF3 group, which decreases to only 120 mV for the fifth one in 5. Differences in the electronic spectra suggest that the Gouterman four orbital model decreases in relevance upon gradual -CF3 substitution, a conclusion that was corroborated by DFT calculations. The very significant energy lowering of the frontier orbitals suggested that photoexcitation should lead to a highly oxidizing photocatalyst. This hypothesis was proven true by finding that the most synthetically accessible CF3-substituted derivative is an excellent catalyst for the photoinduced conversion of bromide to bromine (phenol, toluene, and benzene assay).

19.
Chem Sci ; 10(6): 1634-1643, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842826

RESUMO

Alzheimer's disease (AD) is a multifaceted disease that is characterized by increased oxidative stress, metal-ion dysregulation, and the formation of intracellular neurofibrillary tangles and extracellular amyloid-ß (Aß) aggregates. In this work we report the large affinity binding of the iron(iii) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole complex FeL1 to the Aß peptide (K d ∼ 10-7) and the ability of the bound FeL1 to act as a catalytic antioxidant in both the presence and absence of Cu(ii) ions. Specific findings are that: (a) an Aß histidine residue binds axially to FeL1; (b) that the resulting adduct is an efficient catalase; (c) this interaction restricts the formation of high molecular weight peptide aggregates. UV-Vis and electron paramagnetic resonance (EPR) studies show that although the binding of FeL1 does not influence the Aß-Cu(ii) interaction (K d ∼ 10-10), bound FeL1 still acts as an antioxidant thereby significantly limiting reactive oxygen species (ROS) generation from Aß-Cu. Overall, FeL1 is shown to bind to the Aß peptide, and modulate peptide aggregation. In addition, FeL1 forms a ternary species with Aß-Cu(ii) and impedes ROS generation, thus showing the promise of discrete metal complexes to limit the toxicity pathways of the Aß peptide.

20.
Dalton Trans ; 48(15): 4798-4810, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912558

RESUMO

Cobalt corroles excel as catalysts in the two most clean-energy-relevant processes, the electrochemical oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER). Common to both is the need to replace platinum by earth abundant metal ions and the desire to positively shift the redox potentials of the catalysts. The main aim of this study was to prepare cobalt corroles whose macrocyclic skeleton contains trifluoromethyl groups, since they are purely electron withdrawing with no π-back donation capability. New synthetic methodologies were developed for gaining access to a series of cobalt(iii) corroles with two, three, and four CF3 groups and all of them were fully characterized for determining the effect of the CF3 groups on the structural parameters, electronic structures and redox processes. Our most novel findings are the ability to control the number and positioning of the CF3 groups, the macrocycle deformation and the quite dramatic changes in the electronic spectra induced thereby, the isolation of 4-coordinate cobalt(iii) corroles and the paramagnetic NMR spectra of these intermediate-spin complexes, and the 180 mV/CF3 shift of redox potentials in the direction desired for the utility of the complexes as electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA