Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Aging Cell ; : e14138, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475941

RESUMO

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.

2.
Cancer Med ; 13(2): e6949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38334474

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with an internal tandem duplication in the fms-like tyrosine kinase receptor 3 gene (FLT3-ITD) is associated with poor survival, and few studies have examined the impact of modifiable behaviors, such as nutrient quality and timing, in this subset of acute leukemia. METHODS: The influence of diet composition (low-sucrose and/or low-fat diets) and timing of diet were tested in tandem with anthracycline treatment in orthotopic xenograft mouse models. A pilot clinical study to test receptivity of pediatric leukemia patients to macronutrient matched foods was conducted. A role for the circadian protein, BMAL1 (brain and muscle ARNT-like 1), in effects of diet timing was studied by overexpression in FLT3-ITD-bearing AML cells. RESULTS: Reduced tumor burden in FLT3-ITD AML-bearing mice was observed with interventions utilizing low-sucrose and/or low-fat diets, or time-restricted feeding (TRF) compared to mice fed normal chow ad libitum. In a tasting study, macronutrient matched low-sucrose and low-fat meals were offered to pediatric acute leukemia patients who largely reported liking the meals. Expression of the circadian protein, BMAL1, was heightened with TRF and the low-sucrose diet. BMAL1 overexpression and treatment with a pharmacological inducer of BMAL1 was cytotoxic to FLT3-ITD AML cells. CONCLUSIONS: Mouse models for FLT3-ITD AML show that diet composition and timing slows progression of FLT3-ITD AML growth in vivo, potentially mediated by BMAL1. These interventions to enhance therapy efficacy show preliminary feasibility, as pediatric leukemia patients responded favorable to preparation of macronutrient matched meals.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Criança , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Dieta , Sacarose/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Mutação
3.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111711

RESUMO

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Assuntos
Fator 4 Nuclear de Hepatócito , Metabolismo dos Lipídeos , Animais , Feminino , Camundongos , Carboidratos , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
FASEB J ; 37(2): e22727, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583689

RESUMO

Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.


Assuntos
Mitocôndrias , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estrogênios/metabolismo
8.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472914

RESUMO

Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. In this study, we found that carboxylesterase 1 (CES1) is expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, lipidomic analyses indicated that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, the expression of SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the CES1-PPARα/γ-SCD axis sensitized HCC cells to cisplatin treatment. As a result, the growth of HCC xenograft tumors in NU/J mice was potently slowed by coadministration of cisplatin and CES1 inhibition. Our results, thus, suggest that CES1 is a promising therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metabolismo dos Lipídeos/genética , Cisplatino/uso terapêutico , PPAR alfa/metabolismo , Lipídeos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/uso terapêutico
10.
Oncotarget ; 13: 1308-1313, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473131

RESUMO

We studied the expression of two hepatocyte nuclear factor 4 alpha (HNF4α) isoforms, p-STAT3. and c-Myc in 49 consecutive liver biopsies with nonalcoholic fatty liver disease (NAFLD) using immunohistochemistry. All 49 biopsies (100%) were positive for nuclear expression of P1-HNF4α. Twenty-eight (57%) cases were positive for P2-HNF4α, 6 (12%) were positive for p-STAT3 and 5 (10%) were positive for c-Myc. All 6 (100%) p-STAT3-positive cases were also positive for P2-HNF4α (p = 0.03). p-STAT3-positive cases were more likely to be positive for c-Myc (67% vs. 2%, p = 0.0003). Four cases were positive for P2-HNF4α, p-STAT3 and c-Myc. p-STAT3 expression was associated with hypertension (p = 0.037). All c-Myc positive biopsies were from patients with obesity, diabetes and hypertension. Only c-Myc expression was associated with advanced fibrosis; three (60%) of the c-Myc positive cases were associated with advanced fibrosis in contrast to 7 (10%) of the 44 c-Myc negative cases (p = 0.011). Based on these results, we hypothesize with the following sequence of events with progression of NAFLD: P2-HNF4α expression is followed by expression of p-STAT3 which in turn is followed by the expression of c-Myc. Additional larger studies are needed to confirm these findings.


Assuntos
Hipertensão , Hepatopatia Gordurosa não Alcoólica , Humanos , Fibrose , Fator de Transcrição STAT3
11.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409212

RESUMO

The process of adipogenesis is critical for forming new, healthy adipocytes that are capable of storing lipids. In this issue, Sánchez-Ramírez and Ung et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202111137) reveal a novel role for the metabolite nicotinamide adenine dinucleotide in controlling differentiation of mesenchymal stromal cells into adipocytes.


Assuntos
Adipócitos , Adipogenia , NAD , Adipócitos/metabolismo , Metabolismo dos Lipídeos , Células-Tronco Mesenquimais , Diferenciação Celular
12.
FASEB J ; 36(9): e22482, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947136

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos
13.
Circ Res ; 131(3): 207-221, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35722884

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling. METHODS: SIRPα expression was evaluated in mouse models and patients with CKD. Specifically, mutant, muscle-specific, or cardiac muscle-specific SIRPα KO (knockout) mice were examined after subtotal nephrectomy. Cardiac function was assessed by echocardiography. Metabolic responses were confirmed in cultured muscle cells or cardiomyocytes. RESULTS: We demonstrate that SIRPα regulates myocardial insulin/IGF1R (insulin growth factor-1 receptor) signaling in CKD. First, in the serum of both mice and patients, SIRPα was robustly secreted in response to CKD. Second, cardiac muscle upregulation of SIRPα was associated with impaired insulin/IGF1R signaling, myocardial dysfunction, and fibrosis. However, both global and cardiac muscle-specific SIRPα KO mice displayed improved cardiac function when compared with control mice with CKD. Third, both muscle-specific or cardiac muscle-specific SIRPα KO mice did not significantly activate fetal genes and maintained insulin/IGF1R signaling with suppressed fibrosis despite the presence of CKD. Importantly, SIRPα directly interacted with IGF1R. Next, rSIRPα (recombinant SIRPα) protein was introduced into muscle-specific SIRPα KO mice reestablishing the insulin/IGF1R signaling activity. Additionally, overexpression of SIRPα in myoblasts and cardiomyocytes impaired pAKT (phosphorylation of AKT) and insulin/IGF1R signaling. Furthermore, myotubes and cardiomyocytes, but not adipocytes treated with high glucose or cardiomyocytes treated with uremic toxins, stimulated secretion of SIRPα in culture media, suggesting these cells are the origin of circulating SIRPα in CKD. Both intracellular and extracellular SIRPα exert biologically synergistic effects impairing intracellular myocardial insulin/IGF1R signaling. CONCLUSIONS: Myokine SIRPα expression impairs insulin/IGF1R functions in cardiac muscle, affecting cardiometabolic signaling pathways. Circulating SIRPα constitutes an important readout of insulin resistance in CKD-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Receptor IGF Tipo 1/metabolismo , Receptores Imunológicos/metabolismo , Insuficiência Renal Crônica , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Fibrose , Insulina/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Insuficiência Renal Crônica/complicações
14.
Nutrients ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631227

RESUMO

White adipose tissue (WAT) is a metabolic organ with flexibility to retract and expand based on energy storage and utilization needs, processes that are driven via the coordination of different cells within adipose tissue. WAT is comprised of mature adipocytes (MA) and cells of the stromal vascular cell fraction (SVF), which include adipose progenitor cells (APCs), adipose endothelial cells (AEC) and infiltrating immune cells. APCs have the ability to proliferate and undergo adipogenesis to form MA, the main constituents of WAT being predominantly composed of white, triglyceride-storing adipocytes with unilocular lipid droplets. While adiposity and adipose tissue health are controlled by diet and aging, the endogenous circadian (24-h) biological clock of the body is highly active in adipose tissue, from adipocyte progenitor cells to mature adipocytes, and may play a unique role in adipose tissue health and function. To some extent, 24-h rhythms in adipose tissue rely on rhythmic energy intake, but individual circadian clock proteins are also thought to be important for healthy fat. Here we discuss how and why the clock might be so important in this metabolic depot, and how temporal and qualitative aspects of energy intake play important roles in maintaining healthy fat throughout aging.


Assuntos
Relógios Circadianos , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Células Endoteliais , Nutrientes
15.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459739

RESUMO

Carboxylesterase 1d (Ces1d) is a crucial enzyme with a wide range of activities in multiple tissues. It has been reported to localize predominantly in ER. Here, we found that Ces1d levels are significantly increased in obese patients with type 2 diabetes. Intriguingly, a high level of Ces1d translocates onto lipid droplets where it digests the lipids to produce a unique set of fatty acids. We further revealed that adipose tissue-specific Ces1d knock-out (FKO) mice gained more body weight with increased fat mass during a high fat-diet challenge. The FKO mice exhibited impaired glucose and lipid metabolism and developed exacerbated liver steatosis. Mechanistically, deficiency of Ces1d induced abnormally large lipid droplet deposition in the adipocytes, causing ectopic accumulation of triglycerides in other peripheral tissues. Furthermore, loss of Ces1d diminished the circulating free fatty acids serving as signaling molecules to trigger the epigenetic regulations of energy metabolism via lipid-sensing transcriptional factors, such as HNF4α. The metabolic disorders induced an unhealthy microenvironment in the metabolically active tissues, ultimately leading to systemic insulin resistance.


Assuntos
Carboxilesterase , Diabetes Mellitus Tipo 2 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Carboxilesterase/genética , Carboxilesterase/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Humanos , Camundongos
16.
Cell Death Dis ; 13(4): 374, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440077

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by poor response to standard therapies and therefore unfavorable clinical outcomes. Better understanding of TNBC and new therapeutic strategies are urgently needed. ROR nuclear receptors are multifunctional transcription factors with important roles in circadian pathways and other processes including immunity and tumorigenesis. Nobiletin (NOB) is a natural compound known to display anticancer effects, and our previous studies showed that NOB activates RORs to enhance circadian rhythms and promote physiological fitness in mice. Here, we identified several TNBC cell lines being sensitive to NOB, by itself or in combination. Cell and xenograft experiments showed that NOB significantly inhibited TNBC cell proliferation and motility in vitro and in vivo. ROR loss- and gain-of-function studies showed concordant effects of the NOB-ROR axis on MDA-MB-231 cell growth. Mechanistically, we found that NOB activates ROR binding to the ROR response elements (RRE) of the IκBα promoter, and NOB strongly inhibited p65 nuclear translocation. Consistent with transcriptomic analysis indicating cancer and NF-κB signaling as major pathways altered by NOB, p65-inducible expression abolished NOB effects, illustrating a requisite role of NF-κB suppression mediating the anti-TNBC effect of NOB. Finally, in vivo mouse xenograft studies showed that NOB enhanced the antitumor efficacy in mammary fat pad implanted TNBC, as a single agent or in combination with the chemotherapy agent Docetaxel. Together, our study highlights an anti-TNBC mechanism of ROR-NOB via suppression of NF-κB signaling, suggesting novel preventive and chemotherapeutic strategies against this devastating disease.


Assuntos
Flavonas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biochem ; 171(5): 477-486, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35191986

RESUMO

There is growing evidence that disruption of our 24-h clock increases our risk for acquiring several diseases and disorders. One of these diseases is cancer. While the mechanistic links between circadian clock disruption and cancer initiation or progression are an active area of study, significantly more work needs to be done to understand the molecular substrates involved. Of particular complexity remains the functions of the clock in individual cells during the process of transformation (cancer initiation) versus the functions of the clock in tumour-surrounding stroma in the process of tumour progression or metastasis. Indeed, the nexus of cellular circadian dynamics, metabolism and carcinogenesis is drawing more attention, and many new studies are now highlighting the critical role of circadian rhythms and clock proteins in cancer prevention. In this brief review, we cover some of the basic mechanisms reported to link circadian disruption and cancer at the level of gene expression and metabolism. We also review some of the human studies addressing circadian disruption and cancer incidence as well as some controlled laboratory studies connecting the two in pre-clinical models. Finally, we discuss the tremendous opportunity to use circadian approaches for future prevention and treatment in the context of cancer in specific organs.


Assuntos
Relógios Circadianos , Neoplasias , Carcinogênese/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Neoplasias/metabolismo
18.
Front Neural Circuits ; 16: 1059229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741032

RESUMO

The circadian clock plays a prominent role in neurons during development and throughout aging. This review covers topics pertinent to the role of 24-h rhythms in neuronal development and function, and their tendency to decline with aging. Pharmacological or behavioral modification that augment the function of our internal clock may be central to decline of cognitive disease and to future chronotherapy for aging-related diseases of the central nervous system.


Assuntos
Relógios Circadianos , Núcleo Supraquiasmático , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Encéfalo
20.
Nat Commun ; 12(1): 4006, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183658

RESUMO

MYCN activation is a hallmark of advanced neuroblastoma (NB) and a known master regulator of metabolic reprogramming, favoring NB adaptation to its microenvironment. We found that the expression of the main regulators of the molecular clock loops is profoundly disrupted in MYCN-amplified NB patients, and this disruption independently predicts poor clinical outcome. MYCN induces the expression of clock repressors and downregulates the one of clock activators by directly binding to their promoters. Ultimately, MYCN attenuates the molecular clock by suppressing BMAL1 expression and oscillation, thereby promoting cell survival. Reestablishment of the activity of the clock activator RORα via its genetic overexpression and its stimulation through the agonist SR1078, restores BMAL1 expression and oscillation, effectively blocks MYCN-mediated tumor growth and de novo lipogenesis, and sensitizes NB tumors to conventional chemotherapy. In conclusion, reactivation of RORα could serve as a therapeutic strategy for MYCN-amplified NBs by blocking the dysregulation of molecular clock and cell metabolism mediated by MYCN.


Assuntos
Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Lipogênese/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA