Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gene Expr Patterns ; 52: 119367, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754601

RESUMO

Amur common carp (Cyprinus carpio haematopterus), is a commercially important fish species that has been genetically improved over the years through selective breeding. Despite its significance in aquaculture, limited knowledge exists regarding its embryogenesis and immune genes associated with its early stages of life. This article represents a detailed study of the embryogenesis and innate immune gene expression analysis of the Amur common carp during its ontogenic developments. The entire embryonic developmental process of ∼44 h could be divided into eight periods, beginning with the formation of the zygote, followed by cleavage, morula, blastula, segmentation, pharyngula, and hatching. The segmentation period, which lasted for ∼ 6 h, exhibited the most significant changes, such as muscle contraction, rudimentary heart formation, increased somites number, and the initiation of blood circulation throughout the yolk. The expression of immune-related genes, namely toll-like receptor (TLR)4, nucleotide-binding oligomerization domain (NOD)1, NOD2 and interleukin (IL)-8 showed stage-specific patterns with varying levels of expression across the developmental stages. The TLR4 gene exhibited the highest expression during the neurella stage, while NOD1 and NOD2 peaked during hatching and IL-8 reached its maximum level during the gastrula stage. This is the first report of the innate immune gene expression during the embryogenesis of Amur common carp.

2.
Nat Commun ; 14(1): 6210, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798279

RESUMO

Correlated electron materials (CEMs) host a rich variety of condensed matter phases. Vanadium dioxide (VO2) is a prototypical CEM with a temperature-dependent metal-to-insulator (MIT) transition with a concomitant crystal symmetry change. External control of MIT in VO2-especially without inducing structural changes-has been a long-standing challenge. In this work, we design and synthesize modulation-doped VO2-based thin film heterostructures that closely emulate a textbook example of filling control in a correlated electron insulator. Using a combination of charge transport, hard X-ray photoelectron spectroscopy, and structural characterization, we show that the insulating state can be doped to achieve carrier densities greater than 5 × 1021 cm-3 without inducing any measurable structural changes. We find that the MIT temperature (TMIT) continuously decreases with increasing carrier concentration. Remarkably, the insulating state is robust even at doping concentrations as high as ~0.2 e-/vanadium. Finally, our work reveals modulation-doping as a viable method for electronic control of phase transitions in correlated electron oxides with the potential for use in future devices based on electric-field controlled phase transitions.

3.
Int J Biol Macromol ; 253(Pt 1): 126541, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37648127

RESUMO

Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.


Assuntos
Transdução de Sinais , Receptores Toll-Like , Animais , Receptores Toll-Like/metabolismo , Imunidade Inata , Peixes/metabolismo , Resistência à Doença , Aquicultura , Gerenciamento Clínico , Mamíferos/metabolismo
4.
J Fish Biol ; 103(3): 496-506, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37255266

RESUMO

Red blood cells (RBCs) are the most abundant cell types in the circulatory system of vertebrates. In fish, RBCs retain their nuclei throughout their lifetime and remain transcriptionally and translationally active. While their primary function is typically associated with gas exchange, recent reports indicate that nucleated red blood cells can play a significant role in regulating the body's innate immune response. The current article describes the innate immune role of red blood cells in rohu (Labeo rohita), a freshwater fish species that holds significant commercial importance in India and South-East Asian nations. From the whole blood and mucosal surface RBCs have been isolated through density gradient centrifugation with HiSep™LSM 1077 (density 1.007 ± 0.0010) and their purity has been confirmed by the Giemsa staining followed by microscopical observations. Toll-like receptors (TLR2, 3, 4, 5) and nucleotide oligomerization domain (NOD)-like receptors (NOD1 and NOD2) in RBCs of rohu fingerlings were observed to be significantly activated (P < 0.05) on infection with Aeromonas hydrophila and Edwardsiella tarda. This activation resulted in increased expression of interleukins (IL-8, IL-1ß) and interferon (IFN)-I genes. The activation of TLR4, NOD1 and NOD2, as well as the expression of interleukins and IFN-I genes have been observed in both in vivo and in vitro stimulation of rohu RBCs with lipopolysaccharides. These findings highlight the importance of fish RBCs in enhancing innate immunity against various pathogenic invasions in rohu.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Lipopolissacarídeos/farmacologia , Interferons/genética , Nucleotídeos , Regulação da Expressão Gênica , Receptores Toll-Like/genética , Cyprinidae/genética , Infecções por Bactérias Gram-Negativas/veterinária , Interleucinas/genética , Imunidade Inata/genética , Eritrócitos , Receptores de Interleucina/genética , Aeromonas hydrophila
5.
Nat Commun ; 13(1): 7788, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526634

RESUMO

Electrochemical doping is central to a host of important applications such as bio-sensing, neuromorphic computing and charge storage. However, the mechanisms that enable electrochemical dopability and the various parameters that control doping efficiencies are poorly understood. Here, employing complementary electrochemical and spectroelectrochemical measurements, we report a charge-polarity dependent ion insertion asymmetry in a diketopyrrolopyrrole-based ambipolar π-conjugated polymer. We argue that electrostatic interactions are insufficient to fully account for the observed charge-specific ion insertion into the polymer matrix. Using polymer side-chain dependent electrochemical doping studies, we show that electron density donating and accepting tendencies of polymer side-chains sufficiently describe the observed charge-polarity dependent electrochemical doping. Our observations are akin to the solvation of dopant ions by polymer side-chains. We propose that Gutmann donor/acceptor number framework qualifies the 'solvent-like' properties of polymer side-chains and provides a rational basis for designing π-conjugated polymers with favorable mixed ionic electronic transport properties.

6.
Microcirculation ; 29(6-7): e12770, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35611457

RESUMO

OBJECTIVE: Monitoring microcirculation and visualizing microvasculature are critical for providing diagnosis to medical professionals and guiding clinical interventions. Ultrasound provides a medium for monitoring and visualization; however, there are challenges due to the complex microscale geometry of the vasculature and difficulties associated with quantifying perfusion. Here, we studied established and state-of-the-art ultrasonic modalities (using six probes) to compare their detection of slow flow in small microvasculature. METHODS: Five ultrasonic modalities were studied: grayscale, color Doppler, power Doppler, superb microvascular imaging (SMI), and microflow imaging (MFI), using six linear probes across two ultrasound scanners. Image readability was blindly scored by radiologists and quantified for evaluation. Vasculature visualization was investigated both in vitro (resolution and flow characterization) and in vivo (fingertip microvasculature detection). RESULTS: Superb Microvascular Imaging (SMI) and Micro Flow Imaging (MFI) modalities provided superior images when compared with conventional ultrasound imaging modalities both in vitro and in vivo. The choice of probe played a significant difference in detectability. The slowest flow detected (in the lab) was 0.1885 ml/s and small microvasculature of the fingertip were visualized. CONCLUSIONS: Our data demonstrated that SMI and MFI used with vascular probes operating at higher frequencies provided resolutions acceptable for microvasculature visualization, paving the path for future development of ultrasound devices for microcirculation monitoring.


Assuntos
Microvasos , Ultrassonografia Doppler , Microcirculação , Ultrassonografia/métodos , Microvasos/diagnóstico por imagem , Ultrassonografia Doppler/métodos
7.
HSS J ; 17(3): 351-358, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34539277

RESUMO

Augmented reality (AR) navigation refers to novel technologies that superimpose images, such as radiographs and navigation pathways, onto a view of the operative field. The development of AR navigation has focused on improving the safety and efficacy of neurosurgical and orthopedic procedures. In this review, the authors focus on 3 types of AR technology used in spine surgery: AR surgical navigation, microscope-mediated heads-up display, and AR head-mounted displays. Microscope AR and head-mounted displays offer the advantage of reducing attention shift and line-of-sight interruptions inherent in traditional navigation systems. With the U.S. Food and Drug Administration's recent clearance of the XVision AR system (Augmedics, Arlington Heights, IL), the adoption and refinement of AR technology by spine surgeons will only accelerate.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35233128

RESUMO

Cotton balls are a versatile and efficient tool commonly used in neurosurgical procedures to absorb fluids and manipulate delicate tissues. However, the use of cotton balls is accompanied by the risk of accidental retention in the brain after surgery. Retained cotton balls can lead to dangerous immune responses and potential complications, such as adhesions and textilomas. In a previous study, we showed that ultrasound can be safely used to detect cotton balls in the operating area due to the distinct acoustic properties of cotton compared with the acoustic properties of surrounding tissue. In this study, we enhance the experimental setup using a 3D-printed custom depth box and a Butterfly IQ handheld ultrasound probe. Cotton balls were placed in variety of positions to evaluate size and depth detectability limits. Recorded images were then analyzed using a novel algorithm that implements recently released YOLOv4, a state-of-the-art, real-time object recognition system. As per the radiologists' opinion, the algorithm was able to detect the cotton ball correctly 61% of the time, at approximately 32 FPS. The algorithm could accurately detect cotton balls up to 5mm in diameter, which corresponds to the size of surgical balls used by neurosurgeons, making the algorithm a promising candidate for regular intraoperative use.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35341075

RESUMO

Patient safety and efficiency are top priorities in any surgical procedure. One effective way to achieve these objectives is to automate the logistical and routine tasks that occur in the operating suite. Inspired by smart assistant technology already widely used in the consumer sector, we engineered the Smart Hospital Assistant (SHA), a smart, voice-controlled virtual assistant that handles natural speech recognition while executing non-surgical functions to aid any surgery. In simulated procedures, the SHA reduced operating time, optimized surgical staff resources, and reduced the number of major touch-points that can lead to surgical site infections. The SHA holds promise not only for use in the operating theater, but also in understaffed healthcare environments where automation can improve healthcare delivery.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35237770

RESUMO

Standard diagnostic ultrasound imaging procedures heavily rely on the human operator for image acquisition. This may lead to unnecessary artifacts in the images, since involuntary hand movement is unavoidable. Certain surgical procedures also involve "jump" movement of the subject on the operating table, further exacerbating image quality. In this study, we attempt to mitigate the problem by designing an ultrasound probe holder using 3D printing. This holder would potentially be light enough to attach to surgical retractors, thus eliminating operator intervention and relative motion between the probe and the patient.

11.
Ann Plast Surg ; 85(6): e27-e36, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170582

RESUMO

BACKGROUND: Large skull reconstruction, with the use of customized cranial implants, restores cerebral protection, physiologic homeostasis, and one's preoperative appearance. Cranial implants may be composed of either bone or a myriad of alloplastic biomaterials. Recently, patient-specific cranial implants have been fabricated using clear polymethylmethacrylate (PMMA), a visually transparent and sonolucent variant of standard opaque PMMA. Given the new enhanced diagnostic and therapeutic applications of clear PMMA, we present here a study evaluating all outcomes and complications in a consecutive patient series. METHODS: A single-surgeon, retrospective, 3-year study was conducted on all consecutive patients undergoing large cranioplasty with clear PMMA implants (2016-2019). Patients who received clear PMMA implants with embedded neurotechnologies were excluded due to confounding variables. All outcomes were analyzed in detail and compared with previous studies utilizing similar alloplastic implant materials. RESULTS: Fifty-five patients underwent cranioplasty with customized clear PMMA implants. Twenty-one (38%) were performed using a single-stage cranioplasty method (ie, craniectomy and cranioplasty performed during the same operation utilizing a prefabricated, oversized design and labor-intense, manual modification), whereas the remaining 34 (62%) underwent a standard, 2-stage reconstruction (craniectomy with a delayed surgery for cranioplasty and minimal-to-no implant modification necessary). The mean cranial defect size was 101.8 cm. The mean follow-up time was 9 months (range, 1.5-39). Major complications requiring additional surgery occurred in 7 patients (13%) consisting of 2 (4%) cerebrospinal fluid leaks, 2 (4%) epidural hematomas, and 3 (4%) infections. In addition, 3 patients developed self-limiting or nonoperative complications including 2 (4%) with new onset seizures and 1 (2%) with delayed scalp healing. CONCLUSIONS: This is the first reported consecutive case series of cranioplasty reconstruction using customized clear PMMA implants, demonstrating excellent results with regard to ease of use, safety, and complication rates well below published rates when compared with other alloplastic materials. Clear PMMA also provides additional benefits, such as visual transparency and sonolucency, which is material specific and unavailable with autologous bone. Although these early results are promising, further studies with multicenter investigations are well justified to evaluate long-term outcomes.


Assuntos
Procedimentos de Cirurgia Plástica , Polimetil Metacrilato , Humanos , Complicações Pós-Operatórias/epidemiologia , Próteses e Implantes , Estudos Retrospectivos , Crânio/cirurgia
12.
Ultrasonics ; 108: 106210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32619834

RESUMO

INTRODUCTION: To improve patient outcomes (eg, reducing blood loss and infection), practitioners have gravitated toward noninvasive and minimally invasive surgeries (MIS), which demand specialized toolkits. Focused ultrasound, for example, facilitates thermal ablation from a distance, thereby reducing injury to surrounding tissue. Focused ultrasound can often be performed noninvasively; however, it is more difficult to carry out in neuro-oncological tumors, as ultrasound is dramatically attenuated while propagating through the skull. This shortcoming has prompted exploration of MIS options for intracranial placement of focused ultrasound probes, such as within the BrainPath™ (NICO Corporation, Indianapolis, IN). Herein, we present the design, development, and in vitro testing of an image-guided, focused ultrasound prototype designed for use in MIS procedures. This probe can ablate neuro-oncological lesions despite its small size. MATERIALS & METHODS: Preliminary prototypes were iteratively designed, built, and tested. The final prototype consisted of three 8-mm-diameter therapeutic elements guided by an imaging probe. Probe functionality was validated on a series of tissue-mimicking phantoms. RESULTS: Lesions were created in tissue-mimicking phantoms with average dimensions of 2.5 × 1.2 × 6.5 mm and 3.4 × 3.25 × 9.36 mm after 10- and 30-second sonification, respectively. 30 s sonification with 118 W power at 50% duty cycle generated a peak temperature of 68 °C. Each ablation was visualized in real time by the built-in imaging probe. CONCLUSION: We developed and validated an ultrasound-guided focused ultrasound probe for use in MIS procedures. The dimensional constraints of the prototype were designed to reflect those of BrainPath trocars, which are MIS tools used to create atraumatic access to deep-seated brain pathologies.


Assuntos
Encefalopatias/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Transdutores , Ultrassonografia de Intervenção , Desenho de Equipamento , Humanos , Imagens de Fantasmas
13.
J Neurosurg Spine ; : 1-10, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32470927

RESUMO

OBJECTIVE: Robotic spine surgery systems are increasingly used in the US market. As this technology gains traction, however, it is necessary to identify mechanisms that assess its effectiveness and allow for its continued improvement. One such mechanism is the development of a new 3D grading system that can serve as the foundation for error-based learning in robot systems. Herein the authors attempted 1) to define a system of providing accuracy data along all three pedicle screw placement axes, that is, cephalocaudal, mediolateral, and screw long axes; and 2) to use the grading system to evaluate the mean accuracy of thoracolumbar pedicle screws placed using a single commercially available robotic system. METHODS: The authors retrospectively reviewed a prospectively maintained, IRB-approved database of patients at a single tertiary care center who had undergone instrumented fusion of the thoracic or lumbosacral spine using robotic assistance. Patients with preoperatively planned screw trajectories and postoperative CT studies were included in the final analysis. Screw accuracy was measured as the net deviation of the planned trajectory from the actual screw trajectory in the mediolateral, cephalocaudal, and screw long axes. RESULTS: The authors identified 47 patients, 51% male, whose pedicles had been instrumented with a total of 254 screws (63 thoracic, 191 lumbosacral). The patients had a mean age of 61.1 years and a mean BMI of 30.0 kg/m2. The mean screw tip accuracies were 1.3 ± 1.3 mm, 1.2 ± 1.1 mm, and 2.6 ± 2.2 mm in the mediolateral, cephalocaudal, and screw long axes, respectively, for a net linear deviation of 3.6 ± 2.3 mm and net angular deviation of 3.6° ± 2.8°. According to the Gertzbein-Robbins grading system, 184 screws (72%) were classified as grade A and 70 screws (28%) as grade B. Placement of 100% of the screws was clinically acceptable. CONCLUSIONS: The accuracy of the discussed robotic spine system is similar to that described for other surgical systems. Additionally, the authors outline a new method of grading screw placement accuracy that measures deviation in all three relevant axes. This grading system could provide the error signal necessary for unsupervised machine learning by robotic systems, which would in turn support continued improvement in instrumentation placement accuracy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35253013

RESUMO

In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 in vivo images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR). In closely simulated conditions, the architecture exhibited an average reconstruction accuracy of 90% as indicated by our SSIM. Our study demonstrates that USDL outperforms state of the art image enhancement and reconstruction techniques in both image quality and computational complexity, while maintaining the architecture efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA