Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Genet ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313617

RESUMO

Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.

2.
Front Immunol ; 15: 1425488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086484

RESUMO

As the dimensionality, throughput and complexity of cytometry data increases, so does the demand for user-friendly, interactive analysis tools that leverage high-performance machine learning frameworks. Here we introduce FlowAtlas: an interactive web application that enables dimensionality reduction of cytometry data without down-sampling and that is compatible with datasets stained with non-identical panels. FlowAtlas bridges the user-friendly environment of FlowJo and computational tools in Julia developed by the scientific machine learning community, eliminating the need for coding and bioinformatics expertise. New population discovery and detection of rare populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset, highlighting key immunological findings. FlowAtlas is available at https://github.com/gszep/FlowAtlas.jl.git.


Assuntos
Biologia Computacional , Citometria de Fluxo , Imunofenotipagem , Software , Humanos , Imunofenotipagem/métodos , Citometria de Fluxo/métodos , Biologia Computacional/métodos , Aprendizado de Máquina
3.
Nat Genet ; 56(9): 1925-1937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198675

RESUMO

The complex and dynamic cellular composition of the human endometrium remains poorly understood. Previous endometrial single-cell atlases profiled few donors and lacked consensus in defining cell types. We introduce the Human Endometrial Cell Atlas (HECA), a high-resolution single-cell reference atlas (313,527 cells) combining published and new endometrial single-cell transcriptomics datasets of 63 women with and without endometriosis. HECA assigns consensus and identifies previously unreported cell types, mapped in situ using spatial transcriptomics and validated using a new independent single-nuclei dataset (312,246 nuclei, 63 donors). In the functionalis, we identify intricate stromal-epithelial cell coordination via transforming growth factor beta (TGFß) signaling. In the basalis, we define signaling between fibroblasts and an epithelial population expressing progenitor markers. Integration of HECA with large-scale endometriosis genome-wide association study data pinpoints decidualized stromal cells and macrophages as most likely dysregulated in endometriosis. The HECA is a valuable resource for studying endometrial physiology and disorders, and for guiding microphysiological in vitro systems development.


Assuntos
Endometriose , Endométrio , Análise de Célula Única , Humanos , Feminino , Endométrio/metabolismo , Endométrio/citologia , Análise de Célula Única/métodos , Endometriose/genética , Endometriose/patologia , Endometriose/metabolismo , Transcriptoma , Células Estromais/metabolismo , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Perfilação da Expressão Gênica/métodos , Transdução de Sinais/genética , Fibroblastos/metabolismo
4.
Nat Cardiovasc Res ; 3(6): 714-733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39215134

RESUMO

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.


Assuntos
Proliferação de Células , Redes Reguladoras de Genes , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Inibidor Tecidual de Metaloproteinase-1 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Humanos , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Células Cultivadas , Análise de Célula Única , Epigênese Genética , Transcriptoma , Animais , Subunidade alfa 2 de Fator de Ligação ao Core
5.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898928

RESUMO

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

6.
Nature ; 630(8015): 166-173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778114

RESUMO

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Assuntos
Transdiferenciação Celular , Hepatócitos , Hepatopatias , Fígado , Humanos , Sistema Biliar/citologia , Sistema Biliar/metabolismo , Sistema Biliar/patologia , Biópsia , Plasticidade Celular , Doença Crônica , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/patologia , Hepatócitos/metabolismo , Hepatócitos/citologia , Hepatócitos/patologia , Insulina/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/citologia , Hepatopatias/patologia , Hepatopatias/metabolismo , Regeneração Hepática , Organoides/metabolismo , Organoides/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Serina-Treonina Quinases TOR/metabolismo
7.
Nat Aging ; 4(5): 727-744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622407

RESUMO

Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.


Assuntos
Envelhecimento , Músculo Esquelético , Humanos , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , Camundongos , Adulto , Idoso , Sarcopenia/patologia , Sarcopenia/metabolismo , Masculino , Junção Neuromuscular/metabolismo , Pessoa de Meia-Idade , Feminino
8.
Kidney Int ; 106(1): 85-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431215

RESUMO

Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.


Assuntos
Injúria Renal Aguda , Fenótipo , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Masculino , Pessoa de Meia-Idade , Metabolômica/métodos , Feminino , Transplante de Rim/efeitos adversos , Adulto , Citometria por Imagem/métodos , Rim/patologia , Rim/metabolismo , Fosfolipases A2/metabolismo , Ácido Araquidônico/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Transcriptoma , Dinoprostona/metabolismo , Dinoprostona/análise , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Biópsia , Multiômica
9.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260588

RESUMO

The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.

10.
Cell Rep Methods ; 3(10): 100598, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37776856

RESUMO

Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Cromatina/genética , Microdissecção e Captura a Laser , Perfilação da Expressão Gênica , Congelamento
11.
Nature ; 619(7971): 801-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438528

RESUMO

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Assuntos
Microambiente Celular , Coração , Multiômica , Miocárdio , Humanos , Comunicação Celular , Fibroblastos/citologia , Ácido Glutâmico/metabolismo , Coração/anatomia & histologia , Coração/inervação , Canais Iônicos/metabolismo , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Neuroglia/citologia , Pericárdio/citologia , Pericárdio/imunologia , Plasmócitos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Nó Sinoatrial/anatomia & histologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/metabolismo
12.
Blood ; 141(19): 2343-2358, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36758207

RESUMO

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSCs) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSCs express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified by a small number of canonical markers and are usually described as tumor-associated macrophages. The organization of MNP networks and interactions with HRSCs remains unexplored at high resolution. Here, we defined the global immune-cell composition of cHL and nonlymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages, and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2s were enriched in the vicinity of HRSCs, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.


Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/diagnóstico , Células de Reed-Sternberg/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Imunossupressores , Microambiente Tumoral
13.
Nat Genet ; 55(1): 66-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543915

RESUMO

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.


Assuntos
Pulmão , Mucosa Respiratória , Humanos , Mucosa Respiratória/metabolismo , Células Epiteliais/metabolismo , Linfócitos B , Imunoglobulina A/metabolismo
15.
Nat Cell Biol ; 24(10): 1487-1498, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109670

RESUMO

The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.


Assuntos
Hepatócitos , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Organoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nature ; 608(7924): 724-732, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948631

RESUMO

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Assuntos
Linfócitos , Mutação , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular , Proliferação de Células , Microambiente Celular , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Centro Germinativo/citologia , Centro Germinativo/imunologia , Humanos , Memória Imunológica/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias/genética , Neoplasias/patologia
17.
iScience ; 25(7): 104660, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35845169

RESUMO

Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-ß-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.

18.
Nature ; 606(7913): 343-350, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650442

RESUMO

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Assuntos
Envelhecimento , Hematopoiese Clonal , Células Clonais , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Criança , Pré-Escolar , Hematopoiese Clonal/genética , Células Clonais/citologia , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Adulto Jovem
19.
BJU Int ; 130(4): 408-419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388587

RESUMO

OBJECTIVES: To summarise the causes of ureteric damage and the current standard of care, discussing the risks and benefits of available therapeutic options. We then focus on the current and future solutions that can be provided by ureteric bioengineering and provide a description of the ideal characteristics of a bioengineered product. METHODS: We performed a literature search in February 2021 in: Google Scholar, Medline, and Web of Science. Three searches were conducted, investigating: (a) the epidemiology of ureteric pathology, (b) the current standard of care, and (c) the state of the art in ureteric bioengineering. RESULTS: The most-common causes of ureteric damage are iatrogenic injury and external trauma. Current approaches to treatment include stent placement or surgical reconstruction. Reconstruction can be done using either urological tissue or segments of the gastrointestinal tract. Limitations include scarring, strictures, and infections. Several bioengineered alternatives have been explored in animal studies, with variations in the choice of scaffold material, cellular seeding populations, and pre-implantation processing. Natural grafts and hybrid material appear to be associated with superior outcomes. Furthermore, seeding of the scaffold material with stem cells or differentiated urothelial cells allows for better function compared to acellular scaffolds. Some studies have attempted to pre-implant the graft in the omentum prior to reconstruction, but this has yet to prove any definitive benefits. CONCLUSION: There is an unmet clinical need for safer and more effective treatment for ureteric injuries. Urological bioengineering is a promising solution in preclinical studies. However, substantial scientific, logistic, and economic challenges must be addressed to harness its transformative potential in improving outcomes.


Assuntos
Ureter , Doenças Urológicas , Animais , Bioengenharia , Constrição Patológica , Resultado do Tratamento , Ureter/cirurgia
20.
Sci Immunol ; 7(69): eabm9060, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302862

RESUMO

B cells generate antibodies that are essential for immune protection, but their subgroups are poorly defined. Here, we perform undirected deep profiling of B cells in matched human lymphoid tissues from deceased transplant organ donors and blood. In addition to identifying unanticipated features of tissue-based B cell differentiation, we resolve two subsets of marginal zone B (MZB) cells differing in cell surface and transcriptomic profiles, clonal relationships to other subsets, enrichment of genes in the NOTCH pathway, distribution bias within splenic marginal zone microenvironment, and immunoglobulin repertoire diversity and hypermutation frequency. Each subset is present in spleen, gut-associated lymphoid tissue, mesenteric lymph nodes, and blood. MZB cells and the lineage from which they are derived are depleted in lupus nephritis. Here, we show that this depletion is of only one MZB subset. The other remains unchanged as a proportion of total B cells compared with health. Thus, it is important to factor MZB cell heterogeneity into studies of human B cell responses and pathology.


Assuntos
Linfócitos B , Tecido Linfoide , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Baço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA