RESUMO
BACKGROUND: Fabaceae plays a crucial role in African traditional medicine as a source of large number of important folk medication, agriculture and food plants. In a search of potential antioxidant and anti-inflammatory candidates derived from locally cultivated plants, the flowers of Tipuana tipu (Benth.) Lillo growing in Egypt were subjected to extensive biological and phytochemical studies. The impact of the extraction technique on the estimated biological activities was investigated. METHODS: The flowers were extracted using different solvents (aqueous, methanol, water/methanol (1:1), methanol/methylene chloride (1:1), and methylene chloride). The different extracts were subjected to antioxidant (DPPH, ABTS, and FRAP) and anti-inflammatory (COX-2 and 5-LOX) assays. The methanol extract was assessed for its inhibitory activity against iNOS, NO production, and pro-inflammatory cytokines (NF-KB, TNF-R2, TNF-α, IL-1ß, and IL-6) in LPS-activated RAW 264.7 macrophages. The composition-activity relationship of the active methanol extract was further investigated using a comprehensive LC-QTOF-MS/MS analysis. The major identified phenolic compounds were further quantified using HPLC-DAD technique. The affinity of representative compounds to iNOS, COX-2, and 5-LOX target active sites was investigated using molecular docking and molecular dynamics simulations. RESULTS: The methanol extract exhibited the highest radical scavenging capacity and enzyme inhibitory activities against COX-2 and 5-LOX enzymes with IC50 values of 10.6 ± 0.4 and 14.4 ± 1.0 µg/mL, respectively. It also inhibited iNOS enzyme activity, suppressed NO production, and decreased the secretion of pro-inflammatory cytokines. In total, 62 compounds were identified in the extract including flavonoids, coumarins, organic, phenolic, and fatty acids. Among them 18 phenolic compounds were quantified by HPLC-DAD. The highest docking scores were achieved by kaempferol-3-glucoside and orientin. Additionally, molecular dynamics simulations supported the docking findings. CONCLUSION: The flower could be considered a potentially valuable component in herbal medicines owing to its unique composition and promising bioactivities. These findings encourage increased propagation of T. tipu or even tissue culturing of its flowers for bioprospecting of novel anti-inflammatory drugs. Such applications could be adopted as future approaches that benefit the biomedical field.
Assuntos
Anti-Inflamatórios , Antioxidantes , Flores , Extratos Vegetais , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flores/química , Camundongos , Animais , Células RAW 264.7 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Egito , Simulação por Computador , Espectrometria de Massa com Cromatografia LíquidaRESUMO
BACKGROUND: Anacyclus pyrethrum L. (Akarkara root), a valuable Ayurvedic remedy, is reported to exhibit various pharmacological activities. Akarkara root was subjected to bioassay-guided fractionation, to isolate its active constituents and discover their potential bioactivities, followed by computational analysis. METHODS: The methanol extract and its fractions, methylene chloride, and butanol, were assessed for their antioxidant, anti-inflammatory, and anticholinergic potentials. The antioxidant activity was determined using DPPH, ABTS, FRAP, and ORAC assays. The in vitro anticholinergic effect was evaluated via acetyl- and butyryl-cholinesterase inhibition, while anti-inflammatory effect weas determined using COX-2 and 5-LOX inhibitory assays. The methylene chloride fraction was subjected to GC/MS analysis and chromatographic fractionation to isolate its major compounds. The inhibitory effect on iNOS and various inflammatory mediators in LPS-activated RAW 264.7 macrophages was investigated. In silico computational analyses (molecular docking, ADME, BBB permeability prediction, and molecular dynamics) were performed. RESULTS: Forty-one compounds were identified and quantified and the major compounds, namely, oleamide (A1), stigmasterol (A2), 2E,4E-deca-2,4-dienoic acid 2-phenylethyl amide (A3), and pellitorine (A4) were isolated from the methylene chloride fraction, the most active in all assays. All compounds showed significant in vitro antioxidant, anticholinergic and anti-inflammatory effects. They inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in activated RAW macrophages. The isolated compounds showed good fitting in the active sites of acetylcholinesterase and COX-2 with high docking scores. The ADME study revealed proper pharmacokinetics and drug likeness properties for the isolated compounds. The isolated compounds demonstrated high ability to cross the BBB and penetrate the CNS with values ranging from 1.596 to -1.651 in comparison with Donepezil (-1.464). Molecular dynamics simulation revealed stable conformations and binding patterns of the isolated compounds with the active sites of COX-2 and acetyl cholinesterase. CONCLUSIONS: Ultimately, our results specify Akarkara compounds as promising candidates for the treatment of inflammatory and neurodegenerative diseases.
Assuntos
Acetilcolinesterase , Antioxidantes , Antioxidantes/química , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Ciclo-Oxigenase 2/metabolismo , Cloreto de Metileno , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antibacterianos , Bioensaio , Antagonistas ColinérgicosRESUMO
This study aims to isolate the active constituents of Pyrus pyrifolia Nakai fruits using a bioassay-guided fractionation approach, test their activity in vitro against key enzymes for metabolic disorders, and support it with molecular docking simulations. The antioxidant potential of the methanolic extract (ME), its polar (PF), and non-polar fractions (NPF), along with the inhibitory activity against α-glucosidase, α-amylase, lipase, angiotensin I converting enzyme (ACE), renin, inducible nitric oxide synthase (iNOS), and xanthine oxidase (XO) were assessed. The PF exhibited the highest antioxidant and enzyme inhibitory activity. Purification of PF yielded rutin, isoquercitrin, isorhamnetin-3-O-ß-D-glucoside, chlorogenic acid, quercetin, and cinnamic acid. HPLC-UV analysis of the PF allowed for the quantification of 15 phenolic compounds, including the isolated compounds. Cinnamic acid was the most powerful antioxidant in all assays and potent enzyme inhibitor against the tested enzymes (α-glucosidase, α-amylase, lipase, ACE, renin, iNOS, and XO). Additionally, it showed high affinity to target α-glucosidase and ACE active sites with high docking scores (calculated total binding free energy (ΔGbind) -23.11 kcal/mol and - 20.03 kcal/mol, respectively]. A 20-ns molecular dynamics simulation using MM-GBSA analysis revealed a stable conformation and binding patterns in a stimulating environment of cinnamic acid. Interestingly, the isolated compounds' dynamic investigations including RMSD, RMSF, and Rg demonstrated a stable ligand - protein complex to the active site of iNOS with ΔGbind ranging from - 68.85 kcal/mol to -13.47 kcal/mol. These findings support the notion that P. pyrifolia fruit is a functional food with multifactorial therapeutic agents against metabolic syndrome-associated diseases.
Assuntos
Síndrome Metabólica , Pyrus , Antioxidantes/química , Síndrome Metabólica/tratamento farmacológico , Frutas/química , alfa-Glucosidases , Simulação de Acoplamento Molecular , Renina , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Fenóis/análise , Lipase , alfa-AmilasesRESUMO
The current study reports for the first time the nutritional, fruit volatiles, phytochemical, and biological characteristics of Ferocactus herrerae J. G. Ortega fruits. The nutritional analysis revealed that carbohydrate (20.6%) was the most abundant nutrient followed by dietary fibers (11.8%), lipids (0.9%), and proteins (0.8%). It was rich in vitamins, minerals, essential, and non-essential amino acids. Gas chromatography-mass spectrometry (GC-MS) analysis of the headspace-extracted volatiles showed that 3-methyl octadecane (35.72 ± 2.38%) was the major constituent detected. Spectrophotometric determination of total phenolic and flavonoid contents of the fruit methanolic extract (ME) showed high total phenolic [9.17 ± 0.87 mg/g gallic acid equivalent (GAE)] and flavonoid [4.99 ± 0.23 mg/g quercetin equivalent (QE)] contents. The ME was analyzed using high-performance liquid chromatography with ultraviolet (HPLC-UV), which allowed for both qualitative and quantitative estimation of 16 phenolic compounds. Caffeic acid was the major phenolic acid identified [45.03 ± 0.45 mg/100 g dried powdered fruits (DW)] while quercitrin (52.65 ± 0.31 mg/100 g DW), was the major flavonoid detected. In-vitro assessment of the antioxidant capacities of the ME revealed pronounced activity using three comparative methods; 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (132.06 ± 2.1 µM Trolox equivalent (TE) /g), 2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), (241.1 ± 5.03 uM TE/g), and ferric reducing antioxidant power (FRAP) (258.9 ± 1.75 uM TE/g). Besides, remarkable anti-inflammatory [COX-1 (IC50 = 20.2 ± 1.1 µg/mL) and COX-2 (IC50 = 9.8 ± 0.64 µg/mL)] and acetylcholinesterase inhibitory (IC50 = 1.01 ± 0.39 mg/mL) activities were observed. Finally, our results revealed that these fruits could be used effectively as functional foods and nutraceuticals suggesting an increase in their propagation.