Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 200(1): 31-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33635516

RESUMO

Colorectal cancer (CRC) is currently one of the most frequent malignant neoplasms, ranking 3rd in incidence and 2nd in mortality both in the USA and across the world. The pathogenesis of CRC is a complex interaction between genetic susceptibility and environmental factors such as exposure to metals. Therefore, the present study was intended to assess the imbalances in the concentrations of selected essential/toxic elements (Pb, Cr, Fe, Zn, As, Cd, Cu, Se, Ni, and Hg) in the serum of newly diagnosed colorectal carcinoma patients (n = 165) in comparison with counterpart controls (n = 151) by atomic absorption spectrometry after wet-acid digestion method. Serum carcinoembryonic antigen (CEA) of the CRC patients was determined using immunoradiometric method. Body mass index (BMI) which is an established risk factor for CRC was also calculated for patients and healthy controls. Conversely, average Ni (2.721 µg/g), Cd (0.563 µg/g), As (0.539 µg/g), and Pb (1.273 µg/g) levels were significantly elevated in the serum of CRC patients compared to the healthy donors, while the average Se (7.052 µg/g), Fe (15.67 µg/g), Cu (2.033 µg/g), and Zn (8.059 µg/g) concentrations were elevated in controls. The correlation coefficients between the elements in the cancerous patients demonstrated significantly dissimilar communal relationships compared with the healthy subjects. Significant differences in the elemental levels were also showed for CRC types (primary colorectal lymphoma, gastrointestinal stromal tumor, and adenocarcinoma) and CRC stages (stage-I, stage-II, stage-III, and stage-IV) among the patients. Majority of the elements demonstrated perceptible disparities in their levels based on dietary, habitat, gender, and smoking habits of the malignant patients and healthy subjects. Multivariate methods revealed noticeably divergent apportionment among the toxic/essential elements in the cancerous patients than the healthy counterparts. Overall, the study showed significantly divergent distribution and associations of the essential and toxic elemental levels in the serum of the CRC patients in comparison with the healthy donors.


Assuntos
Neoplasias Colorretais , Oligoelementos , Humanos , Metais , Fumar , Espectrofotometria Atômica , Oligoelementos/análise
2.
Appl Opt ; 59(8): 2559-2568, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225797

RESUMO

We studied laser ablation and plasma property evolution for a nickel (Ni) doped tin (Sn) oxide nanostructures target using laser-induced breakdown spectroscopy (LIBS). The transition metal Ni doped tin oxide nanostructures were synthesized by co-precipitation and hydrothermal methodologies. The size of prepared nanoparticles was verified by X-ray diffraction and transmission electron microscopy techniques. A frequency-doubled pulsed Nd:YAG laser with a wavelength of 532 nm was used to produce ablated plasma nanostructures. Ablation of doped and undoped nanostructures revealed salient-enhanced spectral emissions compared with their bulky counterparts. The emission lines of the constituent elements of doped material were used to find plasma parameters. The plasma temperature was estimated from a Boltzmann plot, and the electron number density was determined from the Saha-Boltzmann equation. The self-absorption effect has been observed in tiny plasma of nanostructures. The affected profiles of spectral lines of Ni and Sn nanoparticles due to self-absorption in LIBS spectra were corrected by the internal reference self-absorption correction (IRSAC) methodology. After correction of emitted line intensities by IRSAC, the electron number density (END) conservation approach was applied for quantitative analysis of doped nanostructures. In the END conservation approach, quantitative analysis of samples was carried out using electron number densities. Quantitative results derived from the END conservation approach at high and low concentrations exhibited good correlation when these were compared and validated with results from a conventional calibration free approach and the standard recognized energy dispersive X-ray technique.

3.
Luminescence ; 30(7): 1045-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25736221

RESUMO

The DNA binding of amphiphilic iron(III) 2,17-bis(sulfonato)-5,10,15-tris(pentafluorophenyl)corrole complex (Fe-SC) was studied using spectroscopic methods and viscosity measurements. Its nuclease-like activity was examined by using pBR322 DNA as a target. The interaction of Fe-SC with human serum albumin (HSA) in vitro was also examined using multispectroscopic techniques. Experimental results revealed that Fe-SC binds to ct-DNA via an outside binding mode with a binding constant of 1.25 × 10(4) M(-1). This iron corrole also displays good activity during oxidative DNA cleavage by hydrogen peroxide or tert-butyl hydroperoxide oxidants, and high-valent (oxo)iron(V,VI) corrole intermediates may play an important role in DNA cleavage. Fe-SC exhibits much stronger binding affinity to site II than site I of HSA, indicating a selective binding tendency to HSA site II. The HSA conformational change induced by Fe-SC was confirmed by UV/Vis and CD spectroscopy.


Assuntos
DNA Super-Helicoidal/química , Compostos Férricos/química , Porfirinas/química , Albumina Sérica/química , Ácidos Sulfônicos/química , Tensoativos/química , Clivagem do DNA , Fluorescência , Humanos , Estrutura Molecular , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA