Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145782

RESUMO

Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35-74%) and root (30-85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33-49%) and root (32-37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13-67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant's defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress.

2.
Sci Rep ; 11(1): 24066, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911985

RESUMO

A potent napin protein has been thoroughly characterized from seeds of rocket salad (Eruca sativa). Eruca sativa napin (EsNap) was purified by ammonium sulfate precipitation (70%) and size-exclusion chromatography. Single intact 16 kDa EsNap band was reduced to 11 and 5 kDa bands respectively on SDS-PAGE. Nano LC-MS/MS yielded two fragments comprising of 26 residues which showed 100% sequence identity with napin-3 of Brassica napus. CD spectroscopy indicated a dominant α-helical structure of EsNap. Monodispersity of EsNap was verified by dynamic light scattering, which also confirmed the monomeric status with a corresponding hydrodynamic radius of 2.4 ± 0.2 nm. An elongated ab initio shape of EsNap was calculated based on SAXS data, with an Rg of 1.96 ± 0.1 nm. The ab initio model calculated by DAMMIF with P1 symmetry and a volume of approx. 31,100 nm3, which corresponded to a molecular weight of approximately 15.5 kDa. The comparison of the SAXS and ab initio modeling showed a minimized χ2-value of 1.87, confirming a similar molecular structure. A homology model was predicted using the coordinate information of Brassica napus rproBnIb (PDB ID: 1SM7). EsNap exhibited strong antifungal activity by significantly inhibiting the growth of Fusarium graminearum. EsNap also showed cytotoxicity against the hepatic cell line Huh7 and the obtained IC50 value was 20.49 µM. Further, strong entomotoxic activity was experienced against different life stages of stored grain insect pest T. castaneum. The result of this study shows insights that can be used in developing potential antifungal, anti-cancerous and insect resistance agents in the future using EsNap from E. sativa.


Assuntos
Albuminas 2S de Plantas/química , Brassica/química , Modelos Moleculares , Conformação Proteica , Sementes/química , Albuminas 2S de Plantas/isolamento & purificação , Albuminas 2S de Plantas/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Cromatografia Líquida , Focalização Isoelétrica , Testes de Sensibilidade Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Difração de Raios X
3.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948287

RESUMO

Drought is one of the most important abiotic stress factors limiting maize production worldwide. The objective of this study was to investigate whether photoprotection of PSII was associated with the degree of drought tolerance and yield in three maize hybrids (30Y87, 31R88, P3939). To do this, three maize hybrids were subjected to three cycles of drought, and we measured the activities of photosystem II (PSII) and photosystem I (PSI). In a second field experiment, three maize hybrids were subjected to drought by withholding irrigation, and plant water status, yield and yield attributes were measured. Drought stress decreased leaf water potential (ΨL) in three maize hybrids, and this reduction was more pronounced in hybrid P3939 (-40%) compared to that of 30Y87 (-30%). Yield and yield attributes of three maize hybrids were adversely affected by drought. The number of kernels and 100-kernel weight was the highest in maize hybrid 30Y87 (-56%, -6%), whereas these were lowest in hybrid P3939 (-88%, -23%). Drought stress reduced the quantum yield of PSII [Y(II)], photochemical quenching (qP), electron transport rate through PSII [ETR(II)] and NPQ, except in P3939. Among the components of NPQ, drought increased the Y(NPQ) with concomitant decrease in Y(NO) only in P3939, whereas Y(NO) increased in drought-stressed plants of hybrid 30Y87 and 31R88. However, an increase in cyclic electron flow (CEF) around PSI and Y(NPQ) in P3939 might have protected the photosynthetic machinery but it did not translate in yield. However, drought-stressed plants of 30Y87 might have sufficiently downregulated PSII to match the energy consumption in downstream biochemical processes. Thus, changes in PSII and PSI activity and development of NPQ through CEF are physiological mechanisms to protect the photosynthetic apparatus, but an appropriate balance between these physiological processes is required, without which plant productivity may decline.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Zea mays/metabolismo , Secas , Transporte de Elétrons/fisiologia , Elétrons , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia , Água/metabolismo
4.
Saudi J Biol Sci ; 28(9): 4946-4956, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466070

RESUMO

Lead (Pb) pollution emerged as an international issue particularly during second and third industrial revolution and is of serious global concern. Cereal crops have shown different capabilities, innate variability and mechanisms to cope with heavy metals present in their environment. Keeping in view the perspectives of food security and safety with increasing demand for Triticum durum L. it becomes imperative to appraise sustainability potential of the crop for Pb contaminated soils. The current study was conducted to test the hypothesis that T. durum germplasm holds genetic variability to evolve under Pb contamination through modulations of morpho-biochemical parameters of selective advantage. The performance of nine T. durum L. cultivars (CBD25, CBD46, CBD58, CBD59, CBD63, CBD66, CBD68, CBD69 and CBD82) was evaluated following exposure to varying Pb levels (control, 10, 20 and 40 mg kg-1) in soil. Growth, biosynthesis of macromolecules and metal distribution in plant parts were assessed using valid procedures and protocols. The cultivars exhibited a differential degree of tolerance to Pb and among the tested germplasm, CBD59 performed better followed by CBD63 and CBD66 for their primary productivity traits, biosynthesis of pigments and other macromolecules (amino acids, proteins and sugar) along with resilience for Pb uptake and its consequent bioaccumulation in grains. The traits used in the study served as strong predictors to provide superior/selective ability to survive under contaminated environment. The study signified that metal tolerance/sensitivity in the cultivars is independent of magnitude of metal stress, growth responses and Pb accumulation in plant parts hence varied in space and time. The existence of genetic variability, which is a pre-requisite for selection can definitely be of great advantage for future breeding projects to develop high yielding varieties/ cultivars of durum wheat with Pb free grains to assure food security and safety.

5.
Environ Pollut ; 248: 756-762, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851585

RESUMO

The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 µM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg-1 As, 164 mg kg-1 Cd and 327 mg kg-1 Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 µM As, 75 µM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg-1 compared to 50 µM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H2O2 content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.


Assuntos
Arseniatos/toxicidade , Arsenitos/toxicidade , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pteris/efeitos dos fármacos , Poluentes do Solo/toxicidade , Zinco/toxicidade , Arseniatos/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Cádmio/metabolismo , Interações Medicamentosas , Peróxido de Hidrogênio/metabolismo , Pteris/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/metabolismo
6.
Kaohsiung J Med Sci ; 34(12): 673-683, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30527201

RESUMO

The present study describes the predicted model and functional characterization of an endochitinase (30 kDa) from corms of Gladiolus grandiflorus. ESI-QTOF-MS generated peptide showed 96% sequence homology with family 18, Class III acidic endochitinase of Gladiolus gandavensis. Purified G. grandiflorus chitinase (GgChi) hydrolyzed 4-methylumbelliferyl ß-d-N,N',N''-triacetylchitotriose substrate showing specific endochitinase activity. Since no structural details of GgChi were available in the Protein Data Bank (PDB), a homology model was predicted using the coordinate information of Crocus vernus chitinase (PDB ID: 3SIM). Ramachandran plot indicated 84.5% in most favored region, 14.8% in additional and 0.6% in generously allowed region while no residue in disallowed region. The predicted structure indicated a highly conserved (ß/α)8 (TIM barrel) structure similar to the family 18, class III chitinases. The GgChi also showed sequence and structural homologies with other active chitinases. The GgChi (50 µg/disc) showed no antibacterial activity, but did provide mild growth inhibition of phytopathogenic fungus Fusarium oxysporum at a concentration of 500 µg/well Similarly, insect toxicity bioassays of GgChi (50 µg) against nymphs of Bemisia tabaci showed 14% reduction in adult emergence and 14% increase in mortality rate in comparison to control values. The GgChi (1.5 mg) protein showed significant reduction in a population of flour beetle (Tribolium castaneum) after 35 days, but lower reactivity against rice weevil (Sitophilus oryzae). The results of this study provide detai.led insight on functional characterization of a family 18 class III acidic plant endochitinase.


Assuntos
Quitinases/química , Quitinases/metabolismo , Iridaceae/enzimologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Quitinases/isolamento & purificação , Bases de Dados de Proteínas , Ensaios Enzimáticos , Fungos/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Inseticidas/toxicidade , Testes de Sensibilidade Microbiana , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA