Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed J ; : 100719, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580051

RESUMO

Transplant patients, including solid-organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients, are exposed to various types of complications, particularly rejection. To prevent these outcomes, transplant recipients commonly receive long-term immunosuppressive regimens that in turn make them more susceptible to a wide array of infectious diseases, notably those caused by opportunistic pathogens. Among these, invasive fungal infections (IFIs) remain a major cause of mortality and morbidity in both SOT and HSCT recipients. Despite the continuing improvement in early diagnostics and treatments of IFIs, the management of these infections in transplant patients is still complicated. Here, we provide an overview concerning the most recent trends in the epidemiology of IFIs in SOT and HSCT recipients by describing the prominent yeasts and molds species involved, the timing of post-transplant IFIs and the risk factors associated with their occurrence in these particularly weak populations. We also give special emphasis into basic research advances in the field that recently suggested a role of the global and long-term prophylactic regimen in orchestrating various biological disturbances in the organism and conditioning the emergence of the most adapted fungal strains to the particular physiological profiles of transplant patients.

2.
Cytokine ; 172: 156384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832161

RESUMO

Fungal infections caused by Scedosporium species are rising among immunocompromised and immunocompetent patients. Within the immunocompetent group, patients with cystic fibrosis (pwCF) are at high risk of developing a chronic airway colonization by these molds. While S. apiospermum is one of the major species encountered in the lungs of pwCF, S. dehoogii has rarely been reported. The innate immune response is believed to be critical for host defense against fungal infections. However, its role has only recently been elucidated and the immune mechanisms against Scedosporium species are currently unknown. In this context, we undertook a comparative investigation of macrophage-mediated immune responses toward S. apiospermum and S. dehoogii conidia. Our data showed that S. apiospermum and S. dehoogii conidia strongly stimulated the expression of a set of pro-inflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6 and TNFα. We demonstrated that S. dehoogii was more potent in stimulating the early release of pro-inflammatory cytokines and chemokines while S. apiospermum induced a late inflammatory response at a higher level. Flow cytometry analysis showed that M1-like macrophages were able to internalize both S. apiospermum and S. dehoogii conidia, with a similar intracellular killing rate for both species. In conclusion, these results suggest that M1-like macrophages can rapidly initiate a strong immune response against both S. apiospermum and S. dehoogii. This response is characterized by a similar killing of internalized conidia, but a different time course of cytokine production.


Assuntos
Fibrose Cística , Micoses , Scedosporium , Humanos , Scedosporium/metabolismo , Macrófagos , Citocinas/metabolismo , Quimiocinas/metabolismo
3.
Front Immunol ; 13: 942417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990693

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease during which fibroblast-like synoviocytes (FLS) contribute to both joint inflammation and destruction. FLS represent the core component of the synovial membrane. Following inflammation of this membrane, an effusion of cell-rich synovial fluid (SF) fills the joint cavity. Unlikely, SF has been shown to contain fibroblasts with some shared phenotypic traits with the synovial membrane FLS. These cells are called SF-FLS and their origin is still unclear. They are either brought into the synovium via migration through blood vessels, or they could originate within the synovium and exist in projections of the synovial membrane. SF-FLS function and phenotype are poorly documented compared to recently well-characterized synovial membrane FLS subsets. Furthermore, no study has yet reported a SF-FLS single-cell profiling analysis. This review will discuss the origin and cellular characteristics of SF-FLS in patients with RA. In addition, recent advances on the involvement of SF-FLS in the pathogenesis of RA will be summarized. Current knowledge on possible relationships between SF-FLS and other types of fibroblasts, including synovial membrane FLS, circulating fibrocytes, and pre- inflammatory mesenchymal (PRIME) cells will also be addressed. Finally, recent therapeutic strategies employed to specifically target SF-FLS in RA will be discussed.


Assuntos
Artrite Reumatoide , Sinoviócitos , Fibroblastos/patologia , Humanos , Inflamação/patologia , Líquido Sinovial , Sinoviócitos/patologia
4.
Front Immunol ; 12: 663683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211463

RESUMO

Background: Tissue derived fibroblast-like synoviocytes (td-FLS) are key actors in pannus formation and contribute to joint destruction and inflammation during rheumatoid arthritis (RA). Several members of the Wnt family, including Wnt5a, may contribute to RA td-FLS activation and can potentially serve as therapeutic targets. Objective: The present work aimed to investigate the expression of Wnt5a signaling elements in RA td-FLS and their potential precursors (fluid derived (fd) FLS and fibrocytes). We also studied the role of Wnt5a in RA td-FLS pro-inflammatory activity and whether the inhibitor SFRP5 could restore Wnt5a-induced synovial dysfunction in vitro. Materials and Methods: The levels of Wnt5a, SFRP5, Wnt5a receptors/coreceptors and Wnt5a pro-inflammatory targets were determined in cultured RA td-FLS, fd-FLS and fibrocytes using qPCR under basal conditions. The expression of pro-inflammatory molecules was assessed after RA td-FLS stimulation with Wnt5a and SFRP5 at different time points. Results: Our data showed that td-FLS, fd-FLS and fibrocytes from patients with RA expressed similar levels of Wnt5a and a set of Wnt5a receptors/coreceptors. We also demonstrated that Wnt5a stimulated the expression of the pro-inflammatory targets, especially IL1ß, IL8 and IL6 in RA td-FLS. Wnt5a-induced inflammation was enhanced in the presence of SFRP5. Furthermore, Wnt5a alone and in conjunction with SFRP5 inhibited the gene expression of TCF4 and the protein levels of the canonical coreceptor LRP5. Conclusion: Wnt5a pro-inflammatory effect is not inhibited but enhanced by SFRP5 in RA td-FLS. This research highlights the importance of carefully evaluating changes in Wnt5a response in the presence of SFRP5.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Sinoviócitos/metabolismo , Proteína Wnt-5a/metabolismo , Idoso , Artrite Reumatoide/diagnóstico , Biomarcadores , Células Cultivadas , Suscetibilidade a Doenças , Feminino , Fibroblastos , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Sinoviócitos/imunologia , Sinoviócitos/patologia , Via de Sinalização Wnt , Proteína Wnt-5a/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA