RESUMO
Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.
Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas B-raf , Pirimidinas , Transdução de Sinais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Mutação , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese químicaRESUMO
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most abundantly used classes among therapeutic agents in medicine. NSAIDs inhibit the enzyme cyclooxygenase (COX), which is responsible for the conversion of arachidonic acid to prostaglandins. Meanwhile, non-selective NSAIDs are considered as a double-edged weapon since inhibition of COX-1 can lead to gastrointestinal side effects and kidney damage, whereas selective COX-2 inhibition provides anti-inflammatory effects without gastrointestinal toxicity. The detection of COX-2 role in inflammation process launched a new era in its management. Several trials have been established to proceed towards selectivity of well-defined anti-inflammatory members. COX-2 selective inhibitors are evidently safer on the gastrointestinal tract than non-selective NSAIDs. Nevertheless, their unexpected cardiovascular risks cannot be ignored. This review article highlights the latest trials aimed at developing new compounds with promising selective COX-2 activity.
RESUMO
Repositioning of already approved medications through repurposing or re-profiling for new medical uses after certain structural modifications is a novel approach in drug discovery. Fluoroquinolone antibiotics are one of the cardinal agents investigated for potential anticancer activities. In this work, levofloxacin was repositioned for anticancer activities. A series of levofloxacin-based compounds were designed and synthesized through the derivatization of levofloxacin's carboxylic acid functionality. The newly synthesized compounds were screened for cytotoxic activities against breast, liver, and leukemia cancer cell lines. Their effect on normal cells was also investigated. The target compounds were evaluated for their proliferative inhibitory activity toward topoisomerase II beta polymerization. Compound 5 showed higher inhibitory activity against a breast cancer cell line (MCF-7) with IC50 = 1.4 µM and lesser side effects on a normal breast cell line (MCF-10a) with IC50 = 30.40 µM than reference drugs. The best activity against a liver cancer cell line (Hep3B) was exhibited by compounds 3c, 4b, 5, 7, 8, 13a and 13c with IC50 values ranging from 0.43 to 8.79 µM. Regarding the effect of compounds 5 and 13a on a leukemia cancer cell line (L-SR), their IC50 values were 0.96 and 3.12 µM, respectively. Compounds 3c and 5 showed Topo2ß inhibitory effects on Hep3B cells (81.33% and 83.73%, respectively), which was better than levofloxacin and etoposide as reference drugs. Cytometry cell cycle analysis revealed that compounds 3c and 5 arrested the cell cycle at the S phase (37.56% and 39.09%, respectively). Compounds 3c and 5 exhibited an elevation in active caspase-3 levels by 4.9 and 4.5 folds, respectively. Molecular modeling simulation of compounds 3c and 5 demonstrated energy scores (-29.77 and -20.46 kcal mol-1, respectively) more than those of the reference drugs as they interact with the most essential amino acids required for good affinity towards human topoisomerase II beta enzyme (PDB ID: 3QX3). Physicochemical characteristics of the most promising cytotoxic compounds 3c and 5 were investigated and compared to etoposide and levofloxacin as reference drugs. However, they showed high gastrointestinal absorption and could not penetrate the blood-brain barrier.
RESUMO
Two innovative series derived from nicotinic acid scaffold were synthesized and evaluated for their anti-inflammatory activity. Ibuprofen, celecoxib and indomethacin were used as standard drugs. All the newly synthesized compounds were in vitro screened for their anti-inflammatory activity adopting 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide dye (MTT), as well as Griess assays. The results showed that all compounds exhibited significant anti-inflammatory activity without affecting the viability of the macrophages compared to ibuprofen. In addition, compounds 4d, 4f, 4g, 4h and 5b exhibited the most potent nitrite inhibition activity and consequently superior anti-inflammatory activity with MTT results ranging between values 86.109 ± 0.51 to 119.084 ± 0.09. The most active compounds were subjected to evaluation of TNF-α, IL-6, iNOS and COX-2 levels in LPS/INF γ-stimulated RAW 264.7 macrophage cells in comparison to ibuprofen as a reference compound. The five compounds showed comparable inhibition potency of these inflammatory cytokines compared to ibuprofen. Same compounds were further in vivo evaluated for their anti-inflammatory activity via carrageenan induced arthritis in rats. Regarding the ulcerogenic profile, compound 4h showed mild infiltration of gastric mucosa superb to compound 5b displayed severe gastritis. Molecular docking of 4h and 5b in the COX-2 active site was performed to evaluate their preferential COX-2 inhibitory potency. The docking results were in accordance with the biological findings.
Assuntos
Ibuprofeno , Niacina , Ratos , Animais , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Relação Estrutura-AtividadeRESUMO
The correction of grammatical errors in natural language processing is a crucial task as it aims to enhance the accuracy and intelligibility of written language. However, developing a grammatical error correction (GEC) framework for low-resource languages presents significant challenges due to the lack of available training data. This article proposes a novel GEC framework for low-resource languages, using Arabic as a case study. To generate more training data, we propose a semi-supervised confusion method called the equal distribution of synthetic errors (EDSE), which generates a wide range of parallel training data. Additionally, this article addresses two limitations of the classical seq2seq GEC model, which are unbalanced outputs due to the unidirectional decoder and exposure bias during inference. To overcome these limitations, we apply a knowledge distillation technique from neural machine translation. This method utilizes two decoders, a forward decoder right-to-left and a backward decoder left-to-right, and measures their agreement using Kullback-Leibler divergence as a regularization term. The experimental results on two benchmarks demonstrate that our proposed framework outperforms the Transformer baseline and two widely used bidirectional decoding techniques, namely asynchronous and synchronous bidirectional decoding. Furthermore, the proposed framework reported the highest F1 score, and generating synthetic data using the equal distribution technique for syntactic errors resulted in a significant improvement in performance. These findings demonstrate the effectiveness of the proposed framework for improving grammatical error correction for low-resource languages, particularly for the Arabic language.
RESUMO
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Sorafenibe/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/química , Transdução de Sinais , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Pirimidinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Simulação de Acoplamento MolecularRESUMO
A novel set of quinoline tailored with the sulfonamide as zinc-binding group (ZBG) has been rationalized and synthesized as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Such hybrids were decorated by a novel elongated imine linker with/without ethylene spacer with variable hydrophobic and lipophilic pockets. Therefore, a regioisomeric tactic has been established, most of which act as efficient inhibitors of the tumor-associated CA isoforms IX and XII. Interestingly, one hybrid 10b displayed an appreciable activity in MCF-7 cell line under normoxic condition (IC50 of 8.42 µM) in comparison to the standard staurosporine (IC50 = 5.34 µM) and excellent activity under hypoxic conditions (IC50 = 1.56 µM) in comparison to staurosporine (IC50 = 4.45 µM). Furthermore, hybrids 8a and 10b encouraged MCF-7 and MDA-MB-231 cell apoptosis alongside promising Bax/Bcl expression ratio change. Docking studies were also, performed and agreed with the biological results. Our SAR study suggested that our regiosiomerization tactic for the quinoline based-sulfonamide molecules led to effective inhibition of tumuor-relevant hCAs IX/XII.
Assuntos
Anidrases Carbônicas , Neoplasias , Quinolinas , Humanos , Bases de Schiff/química , Estrutura Molecular , Relação Estrutura-Atividade , Estaurosporina , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Quinolinas/farmacologiaRESUMO
Alzheimer's Disease (AD) is a multifactorial incurable neurodegenerative disorder. It is characterized by a decline of cholinergic function in parallel with ß-amyloid fibril deposition. Such an imbalance causes severe loss in memory and cognition, leading to behavioral disturbances, depression, and ultimately death. During the last decades, only a few approved drugs were launched onto the market with indications for treating initial and moderate stages of AD. To date, cholinesterase inhibitors (ChEI) are the mainstay line of treatment to ameliorate AD symptoms. Tacrine and Donepezil are the most commonly prescribed anti-dementia drugs, given their potent inhibitory effects. Therefore, many trials have focused on both drugs' structures to synthesize new anti-dementia agents. This paper discusses recent trends of new AD-treating anti-dementia agents focusing on Tacrine and Donepezil analogs and multifunctional hybrid ligands.
Assuntos
Doença de Alzheimer , Nootrópicos , Humanos , Donepezila/uso terapêutico , Tacrina/farmacologia , Tacrina/uso terapêutico , Nootrópicos/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , AcetilcolinesteraseRESUMO
Continue to hypothesize that honey is a storehouse of beneficial bacteria, and the majority of these isolates are levansucrase producers. Accordingly, ten bacterial strains were isolated from different honey sources. Four honey isolates that had the highest levansucrase production and levan yield were identified by the partial sequencing of the 16S rRNA gene as Achromobacter sp. (10A), Bacillus paralicheniformis (2M), Bacillus subtilis (9A), and Bacillus paranthracis (13M). The cytotoxicity of the selected isolates showed negative blood hemolysis. Also, they are sensitive to the tested antibiotics (Amoxicillin + Flucloxacillin, Ampicillin, Gentamicin, Benzathine benzylpenicillin, Epicephin, Vancomycin, Amikacin, and Zinol). The isolates had strong alkaline stability (pHs 9, 11) and were resistant to severe acidic conditions (29-100 percent). The tested isolates recorded complete tolerance to both H2O2 and the bile salt (0.3% Oxgall powder) after 24 h incubation. The cell-free supernatant of the examined strains had antifungal activities against C. Albicans with varying degrees. Also, isolates 2M and 13M showed strong activities against S. aureus. The isolates showed strong adhesion and auto-aggregation capacity. Isolate 10A showed the highest antioxidant activity (91.45%) followed by 2M (47.37%). The isolates recorded different catalase and protease activity. All isolates produced cholesterol oxidase and lipase with different levels. Besides, the four isolates reduced LDL (low-density lipoprotein) to different significant values. The cholesterol-reducing ability varied not only for strains but also for the time of incubation. The previous results recommended these isolates be used safely in solving the LDL problem.
Assuntos
Mel , Probióticos , Bacillus subtilis/genética , Colesterol , Mel/microbiologia , Peróxido de Hidrogênio , RNA Ribossômico 16S/genética , Staphylococcus aureus/genéticaRESUMO
Pyrazolo[3,4-d]pyrimidine as a bioisostere of purine has drawn considerable attention as a privileged scaffold for the design and discovery of novel drugs. Green synthesis is an emerging area in the field of chemistry that provides economic and environmental benefits as an alternative to traditional methods. The present mini review reflects recent advances in the green synthesis of pyrazolo[3,4-d]pyrimidines, published in the time frame from 2006 to 2019.
Assuntos
Pirazóis , Pirimidinas , Relação Estrutura-AtividadeRESUMO
Newly designed levofloxacin analogues were synthesized to act as topoisomerase II beta inhibitors (Topo2ß). Their cytotoxic activity was screened against breast, liver, and leukemia cancer cell lines. The best activity against liver cancer cell line (Hep3B) was exhibited by the target compounds 3c, 3e, 4a, and 6d (IC50 = 2.33, 1.38, 0.60 and 0.43, respectively). (L-SR) leukemia cancer cell line was pronouncedly affected by compounds 3b, 3g and 4a (IC50 = 1.62, 1.41 and 1.61, sequentially). 3c possessed the best activity against breast cancer cell line (MCF-7) with IC50 = 0.66. Compounds 3c, 3e, 3g, 4a and 4c exhibited Topo2ß inhibition activities exceeding etoposide and levofloxacin as reference drugs and variant cell lines. In DNA-Flow cytometry cell cycle analysis, compound 3c arrested the cell cycle at G2/M phase like etoposide and levofloxacin, while compounds 3e and 4a exhibit its arrest at S phase. In addition, 3c, 3e and 4a showed a significant elevation in active caspase-3 levels (10.01, 8.98 and 10.71 folds, respectively). The effect of the new compounds on normal cells was also investigated including breast (MCF10a), liver (THLE2), and lymphocytic (PCS-800-011) normal cell lines.
Assuntos
Antineoplásicos/síntese química , DNA Topoisomerases Tipo II/química , Desenho de Fármacos , Levofloxacino/análogos & derivados , Inibidores da Topoisomerase II/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Levofloxacino/metabolismo , Levofloxacino/farmacologia , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Pyrazolo[3,4-d]pyrimidine scaffold was reported to possess potent cytotoxic and CDK2 inhibitory activity as analogue of roscovitine. OBJECTIVE: To design and synthesize novel 1-(4-flourophenyl)pyrazolo[3,4-d]pyrimidine derivatives as bioisosters of roscovitine with potential cytotoxic and CDK2 inhibitory activity. METHODS: A series of novel 1-(4-flourophenyl)pyrazolo[3,4-d]pyrimidines were designed and synthesized. Structural elucidation for all the newly synthesized compounds was achieved through performing MS, 1H NMR, 13C NMR and IR spectral techniques. Eight compounds were screened for their cytotoxic activity by National Cancer Institute (USA) against 60 different human cancer cell lines. Compounds 2a, 4, 6, 7b, 8a and 8b were further studied through the determination of their IC50 values against the most sensitive cell lines. The inhibitory activities of compounds 2a and 4 were evaluated against CDK2 enzyme. RESULTS: Compound 4 exhibited the most prominent broad-spectrum cytotoxic activity against 42 cell lines representing all human cancer types showing growth inhibition percentages from 53.19 to 99.39. Compound 2a showed promising selectivity against several cell lines. Moreover, all the test compounds exhibited potent cytotoxic activity in nanomolar to micromolar range with IC50 values ranging from 0.58 to 8.32µM. Compound 2a showed significant cytotoxic activity against CNS (SNB-75), lung (NCI-H460) and ovarian (OVCAR-4) cancer cell lines with IC50 values 0.64, 0.78 and 1.9µM, respectively. Compound 4 showed promising potency against leukemia (HL-60) and CNS (SNB-75) cell lines (IC50 = 0.58 and 0.94µM, sequentially). Moreover, the antiproliferative activities of compounds 2a and 4 appeared to correlate well with their ability to inhibit CDK2 at sub-micromolar level (IC50 = 0.69 and 0.67µM, respectively) that were comparable to roscovitine (IC50=0.44µM). The Molecular docking results revealed that compound 4 interacted with the same key amino acids as roscovitine in the active site of CDK2 enzyme with a marked docking score (-14.1031 kcal/mol). CONCLUSION: 1-(4-Flourophenyl)pyrazolo[3,4-d]pyrimidine is a promising scaffold for the design and synthesis of potent cytotoxic leads.
Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Citotoxinas/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Citotoxinas/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-AtividadeRESUMO
A series of novel pyrazolo[3,4-d]pyrimidines was synthesised. Twelve synthesised compounds were evaluated for their anticancer activity against 60 human tumour cell lines by NCI (USA). Compound 7d proved prominent anticancer activity. It showed 1.6-fold more potent anti-proliferative activity against OVCAR-4 cell line with IC50 = 1.74 µM. It also exhibited promising potent anticancer activity against ACHN cell line with IC50 value 5.53 µM, representing 2.2-fold more potency than Erlotinib. Regarding NCI-H460 cell line, compound 7d (IC50 = 4.44 µM) was 1.9-fold more potent than Erlotinib. It inhibited EGFR and ErbB2 kinases at sub-micromolar level (IC50 = 0.18 and 0.25 µM, respectively). Dual inhibition of EGFR and ErbB2 caused induction of apoptosis which was confirmed by a significant increase in the level of active caspase-3 (11-fold). It showed accumulation of cells in pre-G1 phase and cell cycle arrest at G2/M phase.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
BACKGROUND: Colorectal cancer (CRC) has a high morbidity and mortality. Many studies reported that mir-375 is frequently down-regulated in many cancers including esophageal cancer, hepatocellular carcinoma, breast cancer and leukemias. AIM: Our aim was to study the expression of microRNA-375 and its target gene SMAD-7 polymorphisms (rs4939827) in CRC patients in comparison to control subjects and to correlate these results with clinical data of patients to elucidate their role in pathogenesis and early diagnosis of CRC. MATERIAL AND METHODS: The present study was conducted on 122 subjects divided into 86 patients with CRC and 36 age- and sex-matched controls. The followings were done to all subjects: full history taking, full clinical examination, complete blood picture, serum (ALT, AST), serum albumin, CEA, TLC, PLT, and creatinine. Gene expression of miRNA-375 from serum was done by real-time PCR. Gene polymorphism SNPs of SMAD7 (rs4939827) was also done in DNA extracted from blood by real-time PCR. RESULTS: As regards the polymorphism of SMAD7, we found that CC (wild) genotype has high percentage in controls compared to CRC cases (36.1% vs 15.1%). Meanwhile, the mutant and heterozygotes genotypes showed high percentage among cases compared to controls (33.7%, and 51.2% respectively) vs (22.2%, and 41.7% respectively) with no significant statistical analysis. There was a statistically significant high T-allelic frequency among cases and C-allelic frequency among controls. There was a statistically significant association between fold change in micro RNA (-375) and the susceptibility to CRC as there is down-regulation of the microRNA-375 in CRC group with fold change in 0.42±0.27. CONCLUSION: Micro RNA-375 and rs4939827 SNP in SMAD7 could be considered as potential markers for detecting and early diagnosing CRC patients.
Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença/genética , MicroRNAs/genética , Proteína Smad7/genética , Adulto , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/metabolismo , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteína Smad7/análise , Proteína Smad7/metabolismoRESUMO
OBJECTIVE: Idiopathic thrombotic thrombocytopenic purpura (TTP) is a life-threatening disorder mediated by autoantibodies directed against ADAMTS13. This provides a rationale for the use of rituximab in this disorder. We report our experience and the outcome of 10 cases of TTP (9 refractory and 1 relapsing) successfully treated with rituximab in combination with plasma exchange (PE) and other immunosuppressive treatments. METHODS: The diagnosis of TTP was based on clinical criteria and supported by severe deficiency of ADAMTS13 activity and presence of inhibitors in seven cases. Rituximab was started after a median of 18.6 sessions of PE (range: 5-35) at the dose of 375 mg/m(2)/week for 4-8 weeks. RESULTS: Complete remission was achieved in all patients after a median time of 14.4 days of the first dose (range: 6-30). After a median follow-up of 30 months (range: 8-78), eight patients were still in remission and two developed multiple relapses, treated again with the same therapy, and achieved complete responses; they are alive, and in complete remission after a follow-up of 12 and 16 months. CONCLUSION: Rituximab appears to be a safe and effective therapy for refractory and relapsing TTP. However, longer follow-up is recommended to assess relapse and detect possible long-term side effects of this therapy.