Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Adv Sci (Weinh) ; : e2400476, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696618

RESUMO

Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin-loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases.

3.
ACS Bio Med Chem Au ; 4(2): 77-85, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38645931

RESUMO

The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. In situ analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for in situ analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for in situ analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for in situ analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.

4.
ACS Pharmacol Transl Sci ; 7(4): 1169-1177, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633595

RESUMO

The interaction between nanoparticles (NPs) and biological environments is profoundly influenced by a stable, strongly adsorbed "hard" protein corona. This corona significantly determines the NPs' pharmacokinetics and biological destiny. Our study delves into the mechanisms by which colloidal Au nanocrystals that are synthesized electrochemically without surface-capping organic ligands, known as CNM-Au8, traverse the blood-brain barrier (BBB) and target human brain tissue for treating neurodegenerative disorders. We discovered that upon interaction with human plasma, CNM-Au8 gold nanocrystals (AuNCs) effectively attract a variety of crucial apolipoproteins, notably apolipoproteins E, to their surfaces. This interaction likely facilitates their passage through the BBB. Furthermore, the coronas of these AuNCs exhibit a substantial presence of albumin and a notable absence of opsonin-based proteins, contributing to prolonged blood circulation. These characteristics align well with the clinical performance observed for the CNM-Au8 NCs. This study highlights that AuNCs with intentionally engineered structures and surfactant-free surfaces can create a distinct protein corona composition. This finding holds significant promise for the development of advanced therapeutic agents aimed at combating neurodegenerative diseases.

5.
ACS Pharmacol Transl Sci ; 7(3): 855-862, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481694

RESUMO

Accurate assessment of nanomedicines' antibacterial properties is pivotal for their effective use in both in vitro and in vivo settings. Conventional antibacterial activity assessment methods, involving bacterial coculture with compounds on agar plates, may not fully suit nanomedicines due to their susceptibility to alterations in physicochemical properties induced by biological fluids. Furthermore, these biological fluids might even enhance the bacterial growth. This study introduces a novel, rigorous, and reproducible methodology for evaluating nanomedicine antibacterial properties using cell culture media (i.e., DMEM-FBS10%). To assess the antibacterial activity of the nanoparticles in cell culture media, superparamagnetic iron oxide nanoparticles (SPIONs) were chosen as the model nanomedicine due to their clinical significance. A comparative analysis between the traditional and our proposed methods yielded contrasting outcomes, shedding light on the significant impact of biological fluids on nanoparticle antibacterial activities. While the conventional approach suggested the antibacterial effectiveness of SPIONs against Staphylococcus aureus, our innovative method unveiled a substantial increase in bacterial growth in the presence of biological fluids. More specifically, we found a significant increase in bacterial growth when exposed to bare SPIONs at various concentrations, while the formation of a protein corona on SPION surfaces could markedly reduce the observed bacterial growth compared to the control group. These findings underscore the necessity for more refined evaluation techniques that can better replicate the in vivo environment when studying the nanomedicine's antibacterial capabilities.

6.
Trends Biotechnol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38485566

RESUMO

Understanding and meticulously engineering the biomolecular corona on the surface of lipid nanoparticles can accelerate their successful clinical applications beyond mRNA vaccines. We outline the major hurdles of clinical development faced by lipid nanoparticles and discuss how considering and modifying the biomolecular corona could mitigate these challenges.

7.
8.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496642

RESUMO

The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients, into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 µg/ml phosphatidylcholine could singularly increase the number of unique proteins within the protein corona (897 proteins). This specific concentration of phosphatidylcholine selectively depleted the four most abundant plasma proteins, including albumin, thus reducing concentration dynamic range of plasma proteome and boosting LC-MS/MS sensitivity for detection of proteins with lower abundance. By employing an optimized data-independent acquisition (DIA) approach, the inclusion of phosphatidylcholine led to the detection of 1436 proteins in plasma. This significant achievement is made utilizing only a single NP type and one small molecule to analyze a single plasma sample, setting a new standard in proteomic depth of the plasma sample. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate widespread adoption of this methodology for identification and clinical translation of proteomic biomarkers into FDA approved diagnostics.

9.
Nat Commun ; 15(1): 342, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184668

RESUMO

Protein corona, a layer of biomolecules primarily comprising proteins, forms dynamically on nanoparticles in biological fluids and is crucial for predicting nanomedicine safety and efficacy. The protein composition of the corona layer is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Our recent study, involving identical samples analyzed by 17 proteomics facilities, highlighted significant data variability, with only 1.8% of proteins consistently identified across these centers. Here, we implement an aggregated database search unifying parameters such as variable modifications, enzyme specificity, number of allowed missed cleavages and a stringent 1% false discovery rate at the protein and peptide levels. Such uniform search dramatically harmonizes the proteomics data, increasing the reproducibility and the percentage of consistency-identified unique proteins across distinct cores. Specifically, out of the 717 quantified proteins, 253 (35.3%) are shared among the top 5 facilities (and 16.2% among top 11 facilities). Furthermore, we note that reduction and alkylation are important steps in protein corona sample processing and as expected, omitting these steps reduces the number of total quantified peptides by around 20%. These findings underscore the need for standardized procedures in protein corona analysis, which is vital for advancing clinical applications of nanoscale biotechnologies.


Assuntos
Nanopartículas , Coroa de Proteína , Proteômica , Cromatografia Líquida , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
10.
ACS Pharmacol Transl Sci ; 7(1): 18-27, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230290

RESUMO

Understanding the complex interplay of pro-inflammatory and anti-inflammatory cytokines is crucial in the field of wound healing, as it holds the key to developing effective therapeutics. In the initial stages of wound healing, pro-inflammatory cytokines like IL-1ß, IL-6, TNF-α, and various chemokines play vital roles in recruiting cells for debris clearance and the recruitment of growth factors. Careful regulation and timely resolution of this early inflammation are essential for optimal wound repair. As the healing process progresses, anti-inflammatory proteins such as IL-10 and IL-4 become instrumental in facilitating the transition to later stages where pro-inflammatory cytokines promote angiogenesis and wound remodeling. This Perspective underscores the complexity of inflammatory cytokines in wound healing research and emphasizes the need for comprehensive and unbiased methodologies in their evaluation. For robust and reliable results in wound-healing research, a more holistic approach is necessary-one that considers the roles, interactions, and timing of biological molecules, alongside careful sampling and evaluation strategies.

11.
Small ; : e2305940, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803920

RESUMO

Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.

12.
13.
14.
ACS Nano ; 17(14): 13393-13407, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37417775

RESUMO

Detection of viable viruses in the air is critical in order to determine the level of risk associated with the airborne diffusion of viruses. Different methods have been developed for the isolation, purification, and detection of viable airborne viruses, but they require an extensive processing time and often present limitations including low physical efficiency (i.e., the amount of collected viruses), low biological efficiency (i.e., the number of viable viruses), or a combination of all. To mitigate such limitations, we have employed an efficient technique based on the magnetic levitation (Maglev) technique with a paramagnetic solution and successfully identified distinct variations in levitation and density characteristics among bacteria (Escherichia coli), phages (MS2), and human viruses (SARS-CoV-2 and influenza H1N1). Notably, the Maglev approach enabled a significant enrichment of viable airborne viruses in air samples. Furthermore, the enriched viruses obtained through Maglev exhibited high purity, rendering them suitable for direct utilization in subsequent analyses such as reverse transcription-polymerase chain reaction (RT-PCR) or colorimetric assays. The system is portable, easy to use, and cost-efficient and can potentially provide proactive surveillance data for monitoring future outbreaks of airborne infectious diseases and allow for the induction of various preventative and mitigative measures.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus , Humanos , SARS-CoV-2 , Fenômenos Magnéticos
16.
Small ; : e2301385, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269217

RESUMO

Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.

17.
Nat Rev Mater ; : 1-17, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37361608

RESUMO

The protein corona spontaneously develops and evolves on the surface of nanoscale materials when they are exposed to biological environments, altering their physiochemical properties and affecting their subsequent interactions with biosystems. In this Review, we provide an overview of the current state of protein corona research in nanomedicine. We next discuss remaining challenges in the research methodology and characterization of the protein corona that slow the development of nanoparticle therapeutics and diagnostics, and we address how artificial intelligence can advance protein corona research as a complement to experimental research efforts. We then review emerging opportunities provided by the protein corona to address major issues in healthcare and environmental sciences. This Review details how mechanistic insights into nanoparticle protein corona formation can broadly address unmet clinical and environmental needs, as well as enhance the safety and efficacy of nanobiotechnology products.

18.
ACS Pharmacol Transl Sci ; 6(5): 671-682, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200812

RESUMO

Breast cancer is one of the most common cancers in women worldwide, yet conventional treatments have several shortcomings, including low specificity, systemic toxicity, and drug resistance. Nanomedicine technologies provide a promising alternative while also overcoming the limitations posed by conventional therapies. This mini-Review highlights important signaling pathways related to occurrence and development of breast cancer and current breast cancer therapies, followed by an analysis of various nanomedicine technologies developed for diagnosis and treatment of breast cancers.

19.
ACS Pharmacol Transl Sci ; 6(5): 783-801, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200810

RESUMO

In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.

20.
Small ; 19(36): e2301838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119440

RESUMO

The protein corona forms spontaneously on nanoparticle surfaces when nanomaterials are introduced into any biological system/fluid. Reliable characterization of the protein corona is, therefore, a vital step in the development of safe and efficient diagnostic and therapeutic nanomedicine products. 2134 published manuscripts on the protein corona are reviewed and a down-selection of 470 papers spanning 2000-2021, comprising 1702 nanoparticle (NP) systems is analyzed. This analysis reveals: i) most corona studies have been conducted on metal and metal oxide nanoparticles; ii) despite their overwhelming presence in clinical practice, lipid-based NPs are underrepresented in protein corona research, iii) studies use new methods to improve reliability and reproducibility in protein corona research; iv) studies use more specific protein sources toward personalized medicine; and v) careful characterization of nanoparticles after corona formation is imperative to minimize the role of aggregation and protein contamination on corona outcomes. As nanoparticles used in biomedicine become increasingly prevalent and biochemically complex, the field of protein corona research will need to focus on developing analytical approaches and characterization techniques appropriate for each unique nanoparticle formulation. Achieving such characterization of the nano-bio interface of nanobiotechnologies will enable more seamless development and safe implementation of nanoparticles in medicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Reprodutibilidade dos Testes , Proteínas/química , Nanomedicina , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA