Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
An Acad Bras Cienc ; 92 Suppl 1: e20180874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32491135

RESUMO

In plant breeding, the dialelic models univariate have aided the selection of parents for hybridization. Multivariate analyses allow combining and associating the multiple pieces of information of the genetic relationships between traits. Therefore, multivariate analyses might refine the discrimination and selection of the parents with greater potential to meet the goals of a plant breeding program. Here, we propose a method of multivariate analysis used for stablishing mega-traits (MTs) in diallel trials. The proposed model is applied in the evaluation of a multi-environment complete diallel trial with 90 F1's of simple maize hybrids. From a set of 14 traits, we demonstrated how establishing and interpreting MTs with agronomic implication. The diallel analyzes based on mega-traits present an important evolution in statistical procedures since the selection is based on several traits. We believe that the proposed method fills an important gap of plant breeding. In our example, three MTs were established. The first, formed by plant stature-related traits, the second by tassel size-related traits, and the third by grain yield-related traits. Individual and joint diallel analysis using the established MTs allowed identifying the best hybrid combinations for achieving F1's with lower plant stature, tassel size, and higher grain yield.


Assuntos
Hibridização Genética/genética , Melhoramento Vegetal/métodos , Zea mays/genética , Análise Fatorial , Genótipo , Análise Multivariada , Fenótipo , Zea mays/crescimento & desenvolvimento
2.
Plants (Basel) ; 9(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481698

RESUMO

Italian ryegrass (Lolium multiflorum; LOLMU) is one of the most troublesome weeds in temperate regions in the world. This weed species interfere with wheat, corn, rye, and oat, causing significant crop yield losses. This species has evolved glyphosate resistance, making it difficult to control. The mechanisms of glyphosate resistance are still unknown, and an understanding thereof will favor the development of new strategies of management. The present study is the first transcriptome study in LOLMU using glyphosate-resistant and -sensitive biotypes, aiming to identify and to provide a list of the candidate target genes related to glyphosate resistance mechanism. The transcriptome was assembled de novo, producing 87,433 contigs with an N50 of 740 bp and an average length of 575 bp. There were 92 and 54 up- and down-regulated genes, respectively, in the resistant biotype, while a total of 1683 were differentially expressed in the sensitive biotype in response to glyphosate treatment. We selected 14 highly induced genes and seven with repressed expression in the resistant biotype in response to glyphosate. Of these genes, a significant proportion were related to the plasma membrane, indicating that there is a barrier making it difficult for glyphosate to enter the cell.

3.
Plants (Basel) ; 8(6)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181629

RESUMO

Conyza bonariensis (hairy fleabane) is one of the most problematic and widespread glyphosate-resistant weeds in the world. This highly competitive weed species significantly interferes with crop growth and substantially decreases crop yield. Despite its agricultural importance, the molecular mechanisms of glyphosate resistance are still unknown. The present RNA-Seq study was performed with the goal of identifying differentially expressed candidate transcripts (genes) related to metabolism-based non-target site glyphosate resistance in C. bonariensis. The whole-transcriptome was de novo assembled from glyphosate-resistant and -sensitive biotypes of C. bonariensis from Southern Brazil. The RNA was extracted from untreated and glyphosate-treated plants at several timepoints up to 288 h after treatment in both biotypes. The transcriptome assembly produced 90,124 contigs with an average length of 777 bp and N50 of 1118 bp. In response to glyphosate treatment, differential gene expression analysis was performed on glyphosate-resistant and -sensitive biotypes. A total of 9622 genes were differentially expressed as a response to glyphosate treatment in both biotypes, 4297 (44.6%) being up- and 5325 (55.4%) down-regulated. The resistant biotype presented 1770 up- and 2333 down-regulated genes while the sensitive biotype had 2335 and 2800 up- and down-regulated genes, respectively. Among them, 974 up- and 1290 down-regulated genes were co-expressed in both biotypes. In the present work, we identified 41 new candidate target genes from five families related to herbicide transport and metabolism: 19 ABC transporters, 10 CYP450s, one glutathione S-transferase (GST), five glycosyltransferases (GT), and six genes related to antioxidant enzyme catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). The candidate genes may participate in metabolic-based glyphosate resistance via oxidation, conjugation, transport, and degradation, plus antioxidation. One or more of these genes might 'rescue' resistant plants from irreversible damage after glyphosate treatment. The 41 target genes we report in the present study may inform further functional genomics studies, including gene editing approaches to elucidate glyphosate-resistance mechanisms in C. bonariensis.

4.
Funct Plant Biol ; 44(4): 419-429, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480575

RESUMO

Rice (Oryza sativa L.) is one of the most important species for food production worldwide, besides being an excellent genetic model among the grasses. Cold is one of the major abiotic factors reducing rice yield, primarily affecting germination and reproduction phases. Currently, the RNAseq technique allows the identification of differential expressed genes in response to a given treatment, such as cold stress. In the present work, a transcriptome (RNAseq) analysis was performed in the V3 phase for contrasting genotypes Oro (tolerant) and Tio Taka (sensitive), in response to cold (13°C). A total of 241 and 244M readings were obtained, resulting in the alignment of 25.703 and 26.963 genes in genotypes Oro and Tio Taka respectively. The analyses revealed 259 and 5579 differential expressed genes in response to cold in the genotypes Oro and Tio Taka respectively. Ontology classes with larger changes were metabolic process ~27%, cellular process ~21%, binding ~30% and catalytic activity ~22%. In the genotype Oro, 141 unique genes were identified, 118 were common between Oro and Tio Taka and 5461 were unique to Tio Taka. Genes involved in metabolic routes of signal transduction, phytohormones, antioxidant system and biotic stress were identified. These results provide an understanding that breeding for a quantitative trait, such as cold tolerance at germination, several gene loci must be simultaneously selected. In general, few genes were identified, but it was not possible to associate only one gene function as responsible for the cultivar tolerance; since different genes from different metabolic routes were identified. The genes described in the present work will be useful for future investigations and for the detailed validation in marker assisted selection projects for cold tolerance in the germination of rice.

5.
Rice (N Y) ; 8: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844118

RESUMO

BACKGROUND: Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe(2+)) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. RESULTS: A large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs. CONCLUSION: The short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.

6.
BMC Plant Biol ; 11: 15, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247422

RESUMO

BACKGROUND: The adverse environmental conditions impose extreme limitation to growth and plant development, restricting the genetic potential and reflecting on plant yield losses. The progress obtained by classic plant breeding methods aiming at increasing abiotic stress tolerances have not been enough to cope with increasing food demands. New target genes need to be identified to reach this goal, which requires extensive studies of the related biological mechanisms. Comparative analyses in ancestral plant groups can help to elucidate yet unclear biological processes. RESULTS: In this study, we surveyed the occurrence patterns of expressed sequence tag-derived microsatellite markers for model plants. A total of 13,133 SSR markers were discovered using the SSRLocator software in non-redundant EST databases made for all eleven species chosen for this study. The dimer motifs are more frequent in lower plant species, such as green algae and mosses, and the trimer motifs are more frequent for the majority of higher plant groups, such as monocots and dicots. With this in silico study we confirm several microsatellite plant survey results made with available bioinformatics tools. CONCLUSIONS: The comparative studies of EST-SSR markers among all plant lineages is well suited for plant evolution studies as well as for future studies of transferability of molecular markers.


Assuntos
Biologia Computacional/métodos , Repetições Minissatélites/genética , Plantas/genética , Arabidopsis/genética , Composição de Bases/genética , Bryopsida/genética , Chlamydomonas reinhardtii/genética , Códon/genética , Bases de Dados de Ácidos Nucleicos , Dimerização , Etiquetas de Sequências Expressas , Loci Gênicos/genética , Marcadores Genéticos , Genoma de Planta/genética , Anotação de Sequência Molecular , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Oryza/genética , Sequências Reguladoras de Ácido Nucleico/genética , Seleção Genética , Especificidade da Espécie
7.
Braz. j. microbiol ; 38(3): 511-515, July-Sept. 2007. tab
Artigo em Inglês | LILACS | ID: lil-464781

RESUMO

Emphasis has been given on selection of micro-organism for biological control. However, in order to evaluate the biological control potential of a great number of micro-organisms in a small period of time it is necessary to develop an efficient bioassay. Seven hundred and sixty bacterial isolates from different habitats, were selected for compatibility with Rhizobium leguminosarum bv. phaseoli (SEMIA 4077 e SEMIA 4080). Among them 596 isolates were ineffective against both rhizobia. Bean seeds immersed in suspension of each one of these isolates were agitated for 5 hours at 10°C and sowed in non-sterilized soil. The plants were kept in greenhouse. After the development of cotyledonary and primary leaves, these were removed and bioassayed for Xanthomonas axonopodis pv. phaseoli (XAP) control. In the cotyledonary leaves, it was observed that the isolate DFs093 offered 100 percent control, DFs041 and DFs1297 offered 90 percent and DFs490, DFs769, DFs831, DFs842 and DFs843 offered 80 percent control. In the primary leaves, the DFs482 isolated offered 100 percent and the DFs080, DFs348, DFs513, DFs622, DFs769, DFs842 and DFs912 offered 80 percent of XAP control.


Tem-se dado muita ênfase ao controle biológico mediante seleção de microorganismos. Porém, para se avaliar o potencial de biocontroladores de forma massal e em pequeno intervalo de tempo é necessário desenvolver um bioensaio eficiente. Bactérias de diferentes sítios, num total de 760 isolados, foram selecionadas para compatibilidade com Rhizobium leguminosarum bv. phaseoli estirpes SEMIA 4077 e SEMIA 4080, onde 596 isolados foram inefetivos contra ambos rizóbios. Sementes de feijão foram imersas em suspensão de cada um destes isolados sendo agitadas por 5 horas a 10°C, plantadas em solo não esterelizado, sendo as plantas mantidas em casa de vegetação. Após o desenvolvimento das folhas cotiledonares e folhas primárias, estas foram retiradas e avaliadas por bioensaio para o controle de Xanthomonas axonopodis pv. phaseoli (XAP). Nas folhas cotiledonares, observou-se que o isolado DFs093, proporcionou 100 por cento de controle, DFs041 e DFs1297 propiciaram, 90 por cento e DFs490, DFs769, DFs831, DFs842 e DFs843 proporcionaram 80 por cento de controle. Nas folhas primárias, o isolado, DFs482 propiciou 100 por cento e os isolados DFs080, DFs348, DFs513, DFs622, DFs769, DFs842 e DFs912 proporcionaram 80 por cento de controle para XAP.


Assuntos
Antibiose , Bioensaio , Técnicas In Vitro , Controle Biológico de Vetores , Phaseolus nanus , Rhizobium leguminosarum , Microbiologia do Solo , Meios de Cultura , Amostras de Alimentos , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA