Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 507(1-4): 496-502, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30449599

RESUMO

The Sonic Hedgehog signaling (Shh) pathway has been implicated in both proliferation of myoblast cells and terminal differentiation of muscle fibers, and contradictory results of these effects have been described. To clarify the role of Shh during myogenesis, we decided to study the effects of recombinant Shh and the distribution of Gli-1 during in vitro and in situ embryonic chick skeletal muscle differentiation at later stages of development. Gli-1 was found in small aggregates near the nucleus in mononucleated myoblasts and in multinucleated myotubes both in vitro and in situ chick muscle cells. Some Gli-1 aggregates colocalized with gamma-tubulin positive-centrosomes. Gli-1 was also found in striations and at the subsarcolemmal membrane in muscle fibers in situ. Recombinant Shh added to in vitro grown muscle cells induced the nuclear translocation of Gli-1, as well as an increase in the number of myoblasts and in the number of nuclei within myotubes. We suggest that Gli-1 aggregates observed in chick muscle cells near the nuclei of myoblasts and myotubes could be a storage site for the rapid cellular redistribution of Gli-1 upon specific signals during muscle differentiation.


Assuntos
Proteínas Hedgehog/metabolismo , Desenvolvimento Muscular , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Núcleo Celular/metabolismo , Proliferação de Células , Centrossomo/metabolismo , Embrião de Galinha , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Agregados Proteicos , Transporte Proteico , Sarcolema/metabolismo
2.
PLoS Negl Trop Dis ; 9(9): e0004064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371874

RESUMO

The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.


Assuntos
Vacina contra Febre Amarela , Vírus da Febre Amarela/crescimento & desenvolvimento , Estruturas Animais/virologia , Animais , Embrião de Galinha , Histocitoquímica , Vacinas Atenuadas , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA