Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2122037119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914163

RESUMO

Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered ß-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.


Assuntos
Proteína 2 Modificadora da Atividade de Receptores , Receptor Tipo 1 de Hormônio Paratireóideo , Transdução de Sinais , Técnicas Biossensoriais , Ligantes , Hormônio Paratireóideo/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/metabolismo
2.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294858

RESUMO

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Fenômenos Fisiológicos Celulares , AMP Cíclico , Peptídeo 1 Semelhante ao Glucagon , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/química , Sistemas do Segundo Mensageiro
3.
Methods Mol Biol ; 2483: 181-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286676

RESUMO

Cyclic adenosine monophosphate (cAMP) is a universal second messenger that mediates a myriad of cell functions across all kingdoms of life.The ability to monitor intracellular changes of cAMP concentration in living cells using FRET-based biosensors is proving to be of paramount importance to unraveling the sophisticated organization of cAMP signaling.Here we describe the deployment of the fruit fly Drosophila melanogaster, specifically the third instar larval stage, as an in vivo model to study the spatio-temporal dynamics of cAMP in neurons. The ubiquity of cAMP signaling and conservation of fundamental mechanisms across species ensures relevance to vertebrate neurons while providing a more structurally and ethically simple model.


Assuntos
Drosophila melanogaster , Drosophila , Animais , AMP Cíclico , Larva , Neurônios
4.
Methods Mol Biol ; 2268: 137-147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085266

RESUMO

Here we describe the stepwise application of bioluminescence resonance energy transfer (BRET)-based conformational receptor biosensors to study GPCR activation in intact cells. This technology can be easily adopted to various plate reader devices and microtiter plate formats. Due to the high sensitivity of these BRET-based receptor biosensors and their ability to quantify simultaneously receptor activation/de-activation kinetics as well as compound efficacy and potency, these optical tools provide the most direct and unbiased approach to monitor GPCR activity in a high-throughput-compatible assay format, representing a novel promising tool for the discovery of potential GPCR therapeutics.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Luciferases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Conformação Proteica , Receptores Acoplados a Proteínas G/química
6.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846156

RESUMO

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Simulação por Computador , AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes , Análise Espaço-Temporal , Espectrometria de Fluorescência
7.
Commun Biol ; 1: 105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271985

RESUMO

G-protein-coupled receptors (GPCRs) represent one of the most important classes of drug targets. The discovery of new GCPR therapeutics would greatly benefit from the development of a generalizable high-throughput assay to directly monitor their activation or de-activation. Here we screened a variety of labels inserted into the third intracellular loop and the C-terminus of the α2A-adrenergic receptor and used fluorescence (FRET) and bioluminescence resonance energy transfer (BRET) to monitor ligand-binding and activation dynamics. We then developed a universal intramolecular BRET receptor sensor design to quantify efficacy and potency of GPCR ligands in intact cells and real time. We demonstrate the transferability of the sensor design by cloning ß2-adrenergic and PTH1-receptor BRET sensors and monitored their efficacy and potency. For all biosensors, the Z factors were well above 0.5 showing the suitability of such design for microtiter plate assays. This technology will aid the identification of novel types of GPCR ligands.

8.
Elife ; 62017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28784204

RESUMO

Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.


Assuntos
Potenciais de Ação , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiologia , Receptores de Peptídeos/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Drosophila , Fenômenos Eletrofisiológicos , Imagem Óptica
9.
PLoS One ; 12(4): e0174856, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406920

RESUMO

In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.


Assuntos
AMP Cíclico/metabolismo , Citosol/metabolismo , Modelos Biológicos , Diester Fosfórico Hidrolases/metabolismo , Linhagem Celular , Humanos
10.
Cell Rep ; 17(5): 1238-1246, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783939

RESUMO

The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.


Assuntos
AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Corpo Celular/efeitos dos fármacos , Corpo Celular/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Iontoforese , Neurônios Motores/efeitos dos fármacos , Octopamina/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Plant Foods Hum Nutr ; 71(1): 81-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26852311

RESUMO

Three different flavoring methods of olive oil were tested employing two different herbs, thyme and oregano. The traditional method consist in the infusion of herbs into the oil. A second scarcely diffused method is based on the addition of herbs to the crushed olives before the malaxation step during the extraction process. The third innovative method is the implementation of the ultrasound before the olive paste malaxation. The objective of the study is to verify the effect of the treatments on the quality of the product, assessed by means of the chemical characteristics, the phenol composition and the radical scavenging activity of the resulting oils. The less favorable method was the addition of herbs directly to the oil. A positive effect was achieved by the addition of herbs to the olive paste and other advantages were attained by the employment of ultrasound. These last two methods allow to produce oils "ready to sell", instead the infused oils need to be filtered. Moreover, the flavoring methods applied during the extraction process determine a significant increment of phenolic content and radical scavenging activity of olive oils. The increments were higher when oregano is used instead of thyme. Ultrasound inhibited the olive polyphenoloxidase, the endogenous enzyme responsible for olive oil phenol oxidation. This treatment of olive paste mixed with herbs before malaxation was revealed as the most favorable method due to the best efficiency, reduced time consumption and minor labor, enhancing the product quality of flavored olive oil.


Assuntos
Aromatizantes/química , Manipulação de Alimentos/métodos , Olea/química , Azeite de Oliva/química , Origanum/química , Thymus (Planta)/química , Catecol Oxidase/metabolismo , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/química , Humanos , Extração Líquido-Líquido , Pomadas/química , Olea/enzimologia , Azeite de Oliva/isolamento & purificação , Azeite de Oliva/normas , Oxirredução , Fenóis/análise , Fenóis/química , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Paladar
12.
Am J Physiol Gastrointest Liver Physiol ; 309(8): G670-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26316590

RESUMO

Apical cAMP-dependent CFTR Cl(-) channels are essential for efficient vectorial movement of ions and fluid into the lumen of the colon. It is well known that Ca(2+)-mobilizing agonists also stimulate colonic anion secretion. However, CFTR is apparently not activated directly by Ca(2+), and the existence of apical Ca(2+)-dependent Cl(-) channels in the native colonic epithelium is controversial, leaving the identity of the Ca(2+)-activated component unresolved. We recently showed that decreasing free Ca(2+) concentration ([Ca(2+)]) within the endoplasmic reticulum (ER) lumen elicits a rise in intracellular cAMP. This process, which we termed "store-operated cAMP signaling" (SOcAMPS), requires the luminal ER Ca(2+) sensor STIM1 and does not depend on changes in cytosolic Ca(2+). Here we assessed the degree to which SOcAMPS participates in Ca(2+)-activated Cl(-) transport as measured by transepithelial short-circuit current (Isc) in polarized T84 monolayers in parallel with imaging of cAMP and PKA activity using fluorescence resonance energy transfer (FRET)-based reporters in single cells. In Ca(2+)-free conditions, the Ca(2+)-releasing agonist carbachol and Ca(2+) ionophore increased Isc, cAMP, and PKA activity. These responses persisted in cells loaded with the Ca(2+) chelator BAPTA-AM. The effect on Isc was enhanced in the presence of the phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX), inhibited by the CFTR inhibitor CFTRinh-172 and the PKA inhibitor H-89, and unaffected by Ba(2+) or flufenamic acid. We propose that a discrete component of the "Ca(2+)-dependent" secretory activity in the colon derives from cAMP generated through SOcAMPS. This alternative mode of cAMP production could contribute to the actions of diverse xenobiotic agents that disrupt ER Ca(2+) homeostasis, leading to diarrhea.


Assuntos
Cálcio/metabolismo , Cloretos/metabolismo , Colo/metabolismo , AMP Cíclico/metabolismo , Linhagem Celular Tumoral , Colo/citologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Transdução de Sinais
13.
Mol Pharmacol ; 88(3): 596-603, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25979002

RESUMO

The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Acoplados a Proteínas G/genética
14.
Front Cell Neurosci ; 8: 350, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389388

RESUMO

The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains.

15.
Curr Opin Cell Biol ; 27: 87-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530699

RESUMO

The activation of a G protein-coupled receptor is generally triggered by binding of an agonist to the receptor's binding pocket, or, in the case of rhodopsin, by light-induced changes of the pre-bound retinal. This is followed by a series of a conformational changes towards an active receptor conformation, which is capable of signalling to G proteins and other downstream proteins. In the past few years, a number of new techniques have been employed to analyze the kinetics of this activation process, including X-ray crystallographic three-dimensional structures of receptors in the inactive and the active states, NMR studies of labelled receptors, molecular simulations, and optical analyses with fluorescence resonance energy transfer (FRET). Here we review our current understanding of the activation process of GPCRs as well as open questions in the sequence of events ranging from (sub-)microsecond activation by light or agonist binding to millisecond activation of receptors by soluble ligands and the subsequent generation of an intracellular signal.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Receptores Acoplados a Proteínas G/efeitos da radiação , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efeitos da radiação , Transdução de Sinais/efeitos da radiação
16.
J Cell Mol Med ; 16(11): 2715-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22681560

RESUMO

Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1-AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca(2+) ] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this 'store-operated' pathway requires the ER Ca(2+) sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET-based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store-operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca(2+) entry via the plasma membrane Ca(2+) channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca(2+) /cAMP crosstalk system.


Assuntos
Adenilil Ciclases/metabolismo , Canais de Cálcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Adenilil Ciclases/genética , Técnicas Biossensoriais , Cálcio/metabolismo , Canais de Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Toxina Pertussis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
17.
Cell Calcium ; 51(5): 393-401, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22361140

RESUMO

Secretory granules of pancreatic ß-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding ß-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) ß-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding ß-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Glucose/administração & dosagem , Insulina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Comunicação Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Exocitose , Glibureto/administração & dosagem , Concentração de Íons de Hidrogênio , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Microeletrodos , Ratos , Vesículas Secretórias/efeitos dos fármacos
18.
J Biol Chem ; 285(45): 34850-63, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20739289

RESUMO

The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl(-) and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl(-) secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca(2+) from the endoplasmic reticulum (ER), lowering [Ca(2+)] in the ER and thereby activating the Ca(2+)-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca(2+)] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl(-) current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca(2+) buffer that lowers [Ca(2+)] in the ER similar to the effect of 3O-C12 also increased cAMP and I(Cl). The results suggest that 3O-C12 stimulates CFTR-dependent Cl(-) and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca(2+)] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl(-) and fluid secretion.


Assuntos
4-Butirolactona/análogos & derivados , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , 4-Butirolactona/metabolismo , Ânions/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Linhagem Celular Transformada , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Infecções por Pseudomonas/genética , Percepção de Quorum/efeitos dos fármacos , Mucosa Respiratória/microbiologia , Molécula 1 de Interação Estromal
19.
Gastroenterology ; 137(3): 955-64, 964.e1-2, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19328800

RESUMO

BACKGROUND & AIMS: Deoxycholate (DC) has proapoptotic and tumorigenic effects in different cell types of the gastrointestinal tract. Exposure of BHK-21 (stromal) cells to DC induces Ca(2+) entry at the plasma membrane, which affects intracellular Ca(2+) signaling. We assessed whether DC-induced increases in [Ca(2+)] can impinge on plasma membrane properties (eg, ionic conductances) involved in cell apoptosis. METHODS: Single- and double-barreled microelectrodes were used to measure membrane potential (V(m)) and extracellular [K(+)] in BHK-21 fibroblasts and Caco-2 colon carcinoma cells. Apoptosis was assessed by Hoechst labeling, propidium iodide staining, and caspase-3 and caspase-7 assays. RESULTS: DC-induced cell membrane hyperpolarization was directly measured with intracellular microelectrodes in both cell lines. Diverse Ca(2+) mobilizing agents, such as membrane receptor agonists, an inhibitor of the sarco/endoplasmic reticulum Ca(2+) adenosine triphosphatase and a Ca(2+) ionophore, also induced increases in V(m). Removal of extracellular Ca(2+) reduced the agonist- and DC-induced membrane hyperpolarization by approximately 15% and 60%, respectively. These findings indicate a prominent role for Ca(2+) entry at the plasma membrane in the action of this bile salt. Blockade of Ca(2+)-activated K(+) conductances by charybdotoxin and apamin reduced DC-induced hyperpolarization by 75% and 64% in BHK-21 and Caco-2 cells, respectively. These inhibitors also reduced the DC-induced increase in extracellular [K(+)] by 75% and cell apoptosis by approximately 50% in both cell lines. CONCLUSIONS: Ca(2+)-dependent K(+) conductance is an important regulator of DC-induced apoptosis in stromal and colon cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Apamina/farmacologia , Bradicinina/farmacologia , Células CACO-2 , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Charibdotoxina/farmacologia , Quelantes/farmacologia , Cricetinae , Citosol/metabolismo , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Espaço Extracelular/metabolismo , Fibroblastos/fisiologia , Humanos , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Microeletrodos , Potássio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
20.
Nat Cell Biol ; 11(4): 433-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19287379

RESUMO

Depletion of Ca(2+) from the endoplasmic reticulum (ER) results in activation of plasma membrane Ca(2+) entry channels. This 'store-operated' process requires translocation of a transmembrane ER Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to sites closely apposed to Ca(2+) channels at the cell surface. However, it is not known whether a reduction in Ca(2+) stores is coupled to other signalling pathways by this mechanism. We found that lowering the concentration of free Ca(2+) in the ER, independently of the cytosolic Ca(2+) concentration, also led to recruitment of adenylyl cyclases. This resulted in enhanced cAMP accumulation and PKA activation, measured using FRET-based cAMP indicators. Translocation of STIM1 was required for efficient coupling of ER Ca(2+) depletion to adenylyl cyclase activity. We propose the existence of a pathway (store-operated cAMP signalling or SOcAMPS) in which the content of internal Ca(2+) stores is directly connected to cAMP signalling through a process that involves STIM1.


Assuntos
Sinalização do Cálcio , AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Quelantes/farmacologia , AMP Cíclico/biossíntese , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transporte Proteico/efeitos dos fármacos , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA