Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 21(6): e3002164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379316

RESUMO

A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).


Assuntos
Relógios Circadianos , Animais , Humanos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fosforilação , Temperatura
2.
Am J Respir Crit Care Med ; 207(11): 1464-1474, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480958

RESUMO

Rationale: Mechanical ventilation (MV) is life-saving but may evoke ventilator-induced lung injury (VILI). Objectives: To explore how the circadian clock modulates severity of murine VILI via the core clock component BMAL1 (basic helix-loop-helix ARNT like 1) in myeloid cells. Methods: Myeloid cell BMAL1-deficient (LysM (lysozyme 2 promoter/enhancer driving cre recombinase expression)Bmal1-/-) or wild-type control (LysMBmal1+/+) mice were subjected to 4 hours MV (34 ml/kg body weight) to induce lung injury. Ventilation was initiated at dawn or dusk or in complete darkness (circadian time [CT] 0 or CT12) to determine diurnal and circadian effects. Lung injury was quantified by lung function, pulmonary permeability, blood gas analysis, neutrophil recruitment, inflammatory markers, and histology. Neutrophil activation and oxidative burst were analyzed ex vivo. Measurements and Main Results: In diurnal experiments, mice ventilated at dawn exhibited higher permeability and neutrophil recruitment compared with dusk. Experiments at CT showed deterioration of pulmonary function, worsening of oxygenation, and increased mortality at CT0 compared with CT12. Wild-type neutrophils isolated at dawn showed higher activation and reactive oxygen species production compared with dusk, whereas these day-night differences were dampened in LysMBmal1-/- neutrophils. In LysMBmal1-/- mice, circadian variations in VILI severity were dampened and VILI-induced mortality at CT0 was reduced compared with LysMBmal1+/+ mice. Conclusions: Inflammatory response and lung barrier dysfunction upon MV exhibit diurnal variations, regulated by the circadian clock. LysMBmal1-/- mice are less susceptible to ventilation-induced pathology and lack circadian variation of severity compared with LysMBmal1+/+ mice. Our data suggest that the internal clock in myeloid cells is an important modulator of VILI.


Assuntos
Relógios Circadianos , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Pulmão , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Ritmo Circadiano/genética , Camundongos Endogâmicos C57BL
3.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661529

RESUMO

Local circadian clocks are active in most cells of our body. However, their impact on circadian physiology is still under debate. Mortality by endotoxic (LPS) shock is highly time-of-day dependent and local circadian immune function such as the cytokine burst after LPS challenge has been assumed to be causal for the large differences in survival. Here, we investigate the roles of light and myeloid clocks on mortality by endotoxic shock. Strikingly, mice in constant darkness (DD) show a threefold increased susceptibility to LPS as compared to mice in light-dark conditions. Mortality by endotoxic shock as a function of circadian time is independent of light-dark cycles as well as myeloid CLOCK or BMAL1 as demonstrated in conditional knockout mice. Unexpectedly, despite the lack of a myeloid clock these mice still show rhythmic patterns of pro- and anti-inflammatory cytokines such as TNFα, MCP-1, IL-18, and IL-10 in peripheral blood as well as time-of-day and site-dependent traffic of myeloid cells. We speculate that systemic time-cues are sufficient to orchestrate innate immune response to LPS by driving immune functions such as cell trafficking and cytokine expression.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Masculino , Camundongos , Camundongos Knockout
4.
Genes Dev ; 35(15-16): 1161-1174, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301769

RESUMO

In all organisms with circadian clocks, post-translational modifications of clock proteins control the dynamics of circadian rhythms, with phosphorylation playing a dominant role. All major clock proteins are highly phosphorylated, and many kinases have been described to be responsible. In contrast, it is largely unclear whether and to what extent their counterparts, the phosphatases, play an equally crucial role. To investigate this, we performed a systematic RNAi screen in human cells and identified protein phosphatase 4 (PPP4) with its regulatory subunit PPP4R2 as critical components of the circadian system in both mammals and Drosophila Genetic depletion of PPP4 shortens the circadian period, whereas overexpression lengthens it. PPP4 inhibits CLOCK/BMAL1 transactivation activity by binding to BMAL1 and counteracting its phosphorylation. This leads to increased CLOCK/BMAL1 DNA occupancy and decreased transcriptional activity, which counteracts the "kamikaze" properties of CLOCK/BMAL1. Through this mechanism, PPP4 contributes to the critical delay of negative feedback by retarding PER/CRY/CK1δ-mediated inhibition of CLOCK/BMAL1.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Mamíferos , Fosfoproteínas Fosfatases
5.
Nat Commun ; 12(1): 3796, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145278

RESUMO

The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Análise de Célula Única/métodos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Ritmo Circadiano/fisiologia , Criptocromos/genética , Técnicas de Introdução de Genes/métodos , Genes Reporter/genética , Células HCT116 , Humanos , Proteínas Circadianas Period/genética
6.
Methods Mol Biol ; 2130: 103-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33284439

RESUMO

RNA interference (RNAi) allows for the selective downregulation of gene expression by neutralizing targeted mRNA molecules and has frequently been used in high-throughput screening endeavors. Here, we describe a protocol for the highly parallel RNAi-mediated downregulation of gene expression in order to search for components involved in circadian rhythm generation. We use lentiviral gene transfer to deliver shRNA expressing plasmids into circadian reporter cells ensuring for efficient and stable knockdown. Circadian rhythms are monitored using live-cell bioluminescence recording of synchronized reporter cells over several days. In addition, we present a new software tool (ChronoStar) for efficient, parallel time-series analysis to extract rhythm parameters such as period, phase, amplitude, and damping.


Assuntos
Proteínas CLOCK/genética , Clonagem Molecular/métodos , Interferência de RNA , Animais , Proteínas CLOCK/metabolismo , Genes Reporter , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética
7.
Front Physiol ; 10: 577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143130

RESUMO

Circadian clocks are endogenous oscillators essential for orchestrating daily rhythms in physiology, metabolism and behavior. While mouse models have been instrumental to elucidate the molecular mechanism of circadian rhythm generation, our knowledge about the molecular makeup of circadian oscillators in humans is still limited. Here, we used duplex CRISPR/Cas9 technology to generate three cellular models for studying human circadian clocks: CRY1 knockout cells, CRY2 knockout cells as well as CRY1/CRY2 double knockout cells. Duplex CRISPR/Cas9 technology efficiently removed whole exons of CRY genes by using two guide RNAs targeting exon-flanking intron regions of human osteosarcoma cells (U-2 OS). Resulting cell clones did not express CRY proteins and showed short period, low-amplitude rhythms (for CRY1 knockout), long period rhythms (for CRY2 knockout) or were arrhythmic (for CRY1/CRY2 double knockout) similar to circadian phenotypes of cells derived from classical knockout mouse models.

8.
J Clin Invest ; 128(9): 3826-3839, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29953415

RESUMO

BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium für Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.


Assuntos
Biomarcadores/sangue , Ritmo Circadiano/fisiologia , Adulto , Cronoterapia , Ritmo Circadiano/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Marcadores Genéticos , Voluntários Saudáveis , Humanos , Aprendizado de Máquina , Masculino , Modelos Biológicos , Monócitos/metabolismo , Medicina de Precisão , Fatores de Tempo , Adulto Jovem
9.
PLoS Genet ; 14(1): e1007189, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377895

RESUMO

Circadian clocks are molecular timekeeping mechanisms that allow organisms to anticipate daily changes in their environment. The fundamental cellular basis of these clocks is delayed negative feedback gene regulation with PERIOD and CRYPTOCHROME containing protein complexes as main inhibitory elements. For a correct circadian period, it is essential that such clock protein complexes accumulate in the nucleus in a precisely timed manner, a mechanism that is poorly understood. We performed a systematic RNAi-mediated screen in human cells and identified 15 genes associated with the nucleo-cytoplasmic translocation machinery, whose expression is important for circadian clock dynamics. Among them was Transportin 1 (TNPO1), a non-classical nuclear import carrier, whose knockdown and knockout led to short circadian periods. TNPO1 was found in endogenous clock protein complexes and particularly binds to PER1 regulating its (but not PER2's) nuclear localization. While PER1 is also transported to the nucleus by the classical, Importin ß-mediated pathway, TNPO1 depletion slowed down PER1 nuclear import rate as revealed by fluorescence recovery after photobleaching (FRAP) experiments. In addition, we found that TNPO1-mediated nuclear import may constitute a novel input pathway of how cellular redox state signals to the clock, since redox stress increases binding of TNPO1 to PER1 and decreases its nuclear localization. Together, our RNAi screen knocking down import carriers (but also export carriers) results in short and long circadian periods indicating that the regulatory pathways that control the timing of clock protein subcellular localization are far more complex than previously assumed. TNPO1 is one of the novel players essential for normal circadian periods and potentially for redox regulation of the clock.


Assuntos
Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , beta Carioferinas/fisiologia , Transporte Ativo do Núcleo Celular/genética , Células HEK293 , Humanos , Transporte Proteico/genética , Células Tumorais Cultivadas , beta Carioferinas/genética
10.
Elife ; 62017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869038

RESUMO

The importance of natural gene expression variation for human behavior is undisputed, but its impact on circadian physiology remains mostly unexplored. Using umbilical cord fibroblasts, we have determined by genome-wide association how common genetic variation impacts upon cellular circadian function. Gene set enrichment points to differences in protein catabolism as one major source of clock variation in humans. The two most significant alleles regulated expression of COPS7B, a subunit of the COP9 signalosome. We further show that the signalosome complex is imported into the nucleus in timed fashion to stabilize the essential circadian protein BMAL1, a novel mechanism to oppose its proteasome-mediated degradation. Thus, circadian clock properties depend in part upon a genetically-encoded competition between stabilizing and destabilizing forces, and genetic alterations in these mechanisms provide one explanation for human chronotype.


Assuntos
Variação Biológica da População , Ritmo Circadiano , Regulação da Expressão Gênica , Variação Genética , Fatores de Transcrição ARNTL/metabolismo , Complexo do Signalossomo COP9/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Estabilidade Proteica , Proteínas/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(7): 1572-1577, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28159888

RESUMO

Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Redes e Vias Metabólicas/genética , Transcriptoma , Algoritmos , Animais , Enzimas/genética , Enzimas/metabolismo , Ontologia Genética , Humanos , Cinética , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ratos
12.
Target Oncol ; 10(4): 523-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25559288

RESUMO

After extensive research on radiochemotherapy, 5-year survival rates of children with high risk neuroblastoma still do not exceed 50%, owing to adverse side-effects exemplified by doxorubicin-induced cardiomyopathy. A promising new approach is the combination of conventional therapies with specific modulation of cell signaling pathways promoting therapeutic resistance, such as inhibition of aberrant kinase activity or re-expression of silenced tumor suppressor genes by means of chromatin remodeling. In this regard, we established a system that allows to identify potential drug targets as well as to validate respective candidate inhibitors in high-risk neuroblastoma model cell lines. Cell culture, drug exposure, shRNA-mediated knockdown and phenotype analysis are integrated into an efficient and versatile single well-based protocol. By utilizing this system, we assessed RG108, SGI-1027 and nanaomycin A, three novel DNA methyltransferase inhibitors that have not been tested in neuroblastoma cell lines so far, for their potential of synergistic anti-tumor activity in combination with doxorubicin. We found that, similarly to azacytidine, SGI-1027 and nanaomycin A mediate synergistic growth inhibition with doxorubicin independently of N-Myc status. However, they display high cytotoxicity but lack global DNA demethylation activity. Secondly, we conducted a lentiviral shRNA screen of F-box proteins, key regulators of protein stability, and identified Fbxw11/ß-TrCP2 as well as Fbxo5/Emi1 as potential therapeutic targets in neuroblastoma. These results complement existing studies and underline the reliability and versatility of our single well-based protocol.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas F-Box/genética , Neuroblastoma/terapia , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Células HEK293 , Humanos , Terapia de Alvo Molecular , Naftoquinonas/administração & dosagem , Naftoquinonas/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Ftalimidas/administração & dosagem , Ftalimidas/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Triptofano/administração & dosagem , Triptofano/análogos & derivados , Triptofano/farmacologia
13.
Clin Exp Rheumatol ; 33(1): 34-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25535886

RESUMO

OBJECTIVES: The circadian rhythm of clinical symptoms in rheumatoid arthritis (RA) has been primarily attributed to circadian variations in humoral factors and hormones. In this study, we investigated circadian rhythms of cellular immunity in RA (CiRA study). METHODS: Peripheral blood of female postmenopausal patients with active RA (DAS 28 ≥ 4.2) (n=5) and female postmenopausal non-RA controls (n=5) was collected every 2 hours for 24 hours and analysed by flow cytometry, cytokine multiplex suspension array and quantitative RT-PCR of clock gene expression in isolated CD14+ monocytes. Endogenous circadian rhythms of macrophages were investigated by BMAL1-luciferase bioluminescence. Significance of circadian rhythms was tested by Cosinor analysis. RESULTS: We found (i) circadian rhythms in the relative frequency of peripheral blood cell populations that were present in postmenopausal non-RA controls but absent in patients with active RA, (ii) circadian rhythms that were absent in non-RA controls but present in patients with RA and (iii) circadian rhythms that were present in both groups but with differences in peak phase or amplitude or amplitude/magnitude. The circadian rhythm in expression of the clock genes PER2 and PER3 in CD14+ monocytes was lost in patients with RA. The amplitude of BMAL1-luciferase bioluminescence tended to be lower in patients with RA than in non-RA controls. CONCLUSIONS: We conclude that (i) in RA some immune cell populations lose their normal circadian rhythms whereas others establish new 'inflammatory' circadian rhythms and (ii) these findings provide a good basis for further identifying pathophysiological aspects of RA chronobiology with potential therapeutic implications.


Assuntos
Artrite Reumatoide/imunologia , Ritmo Circadiano , Imunidade Celular , Macrófagos/imunologia , Monócitos/imunologia , Adaptação Fisiológica , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/genética , Artrite Reumatoide/fisiopatologia , Biomarcadores/sangue , Estudos de Casos e Controles , Ritmo Circadiano/genética , Citocinas/sangue , Feminino , Humanos , Imunidade Humoral , Mediadores da Inflamação/sangue , Receptores de Lipopolissacarídeos/sangue , Macrófagos/metabolismo , Pessoa de Meia-Idade , Monócitos/metabolismo , Proteínas Circadianas Period/genética , Projetos Piloto , Pós-Menopausa/imunologia , RNA Mensageiro/sangue , Fatores de Tempo
14.
PLoS Genet ; 10(5): e1004338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875049

RESUMO

Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.


Assuntos
Relógios Circadianos/genética , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas/biossíntese , Neoplasias Cutâneas/genética , Proteínas ras/biossíntese , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Neoplasias Cutâneas/patologia , Proteínas ras/genética
15.
Nat Neurosci ; 17(3): 377-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531307

RESUMO

The timing of daily circadian behavior can be highly variable among different individuals, and twin studies have suggested that about half of this variability is environmentally controlled. Similar plasticity can be seen in mice exposed to an altered lighting environment, for example, 22-h instead of 24-h, which stably alters the genetically determined period of circadian behavior for months. The mechanisms mediating these environmental influences are unknown. We found that transient exposure of mice to such lighting stably altered global transcription in the suprachiasmatic nucleus (SCN) of the hypothalamus (the master clock tissue regulating circadian behavior in mammals). In parallel, genome-wide methylation profiling revealed global alterations in promoter DNA methylation in the SCN that correlated with these changes. Behavioral, transcriptional and DNA methylation changes were reversible after prolonged re-entrainment to 24-h d. Notably, infusion of a methyltransferase inhibitor to the SCN suppressed period changes. We conclude that the SCN utilizes DNA methylation as a mechanism to drive circadian clock plasticity.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/genética , Metilação de DNA/genética , Plasticidade Neuronal/fisiologia , Fotoperíodo , Actigrafia , Animais , Comportamento Animal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/metabolismo , Transcriptoma/genética
16.
PLoS Genet ; 9(3): e1003398, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555304

RESUMO

Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.


Assuntos
Proteínas CLOCK , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mapas de Interação de Proteínas/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Transdução de Sinais
18.
Mol Cell Biol ; 32(22): 4585-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966205

RESUMO

Factors interacting with core circadian clock components are essential to achieve transcriptional feedback necessary for metazoan clocks. Here, we show that all three members of the Drosophila behavior human splicing (DBHS) family of RNA-binding proteins play a role in the mammalian circadian oscillator, abrogating or altering clock function when overexpressed or depleted in cells. Although these proteins are members of so-called nuclear paraspeckles, depletion of paraspeckles themselves via silencing of the structural noncoding RNA (ncRNA) Neat1 did not affect overall clock function, suggesting that paraspeckles are not required for DBHS-mediated circadian effects. Instead, we show that the proteins bound to circadian promoter DNA in a fashion that required the PERIOD (PER) proteins and potently repressed E-box-mediated transcription but not cytomegalovirus (CMV) promoter-mediated transcription when they were exogenously recruited. Nevertheless, mice with one or both copies of these genes deleted show only small changes in period length or clock gene expression in vivo. Data from transient transfections show that each of these proteins can either repress or activate, depending on the context. Taken together, our data suggest that all of the DBHS family members serve overlapping or redundant roles as transcriptional cofactors at circadian clock-regulated genes.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Citomegalovirus/genética , Drosophila , Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Splicing de RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica
19.
Proc Natl Acad Sci U S A ; 109(27): 10903-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711835

RESUMO

Circadian clocks govern a wide range of cellular and physiological functions in various organisms. Recent evidence suggests distinct functions of local clocks in peripheral mammalian tissues such as immune responses and cell cycle control. However, studying circadian action in peripheral tissues has been limited so far to mouse models, leaving the implication for human systems widely elusive. In particular, circadian rhythms in human skin, which is naturally exposed to strong daytime-dependent changes in the environment, have not been investigated to date on a molecular level. Here, we present a comprehensive analysis of circadian gene expression in human epidermis. Whole-genome microarray analysis of suction-blister epidermis obtained throughout the day revealed a functional circadian clock in epidermal keratinocytes with hundreds of transcripts regulated in a daytime-dependent manner. Among those, we identified a circadian transcription factor, Krüppel-like factor 9 (Klf9), that is substantially up-regulated in a cortisol and differentiation-state-dependent manner. Gain- and loss-of-function experiments showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include proliferation/differentiation markers that also show circadian expression in vivo, suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling the expression of target genes in a daytime-dependent manner.


Assuntos
Ritmo Circadiano/fisiologia , Epiderme/fisiologia , Queratinócitos/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Anti-Inflamatórios/farmacologia , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ritmo Circadiano/genética , Células Epidérmicas , Estudo de Associação Genômica Ampla , Homeostase/fisiologia , Humanos , Hidrocortisona/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Luciferases/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/fisiopatologia
20.
Proc Natl Acad Sci U S A ; 106(50): 21407-12, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955445

RESUMO

Time of day-dependent variations of immune system parameters are ubiquitous phenomena in immunology. The circadian clock has been attributed with coordinating these variations on multiple levels; however, their molecular basis is little understood. Here, we systematically investigated the link between the circadian clock and rhythmic immune functions. We show that spleen, lymph nodes, and peritoneal macrophages of mice contain intrinsic circadian clockworks that operate autonomously even ex vivo. These clocks regulate circadian rhythms in inflammatory innate immune functions: Isolated spleen cells stimulated with bacterial endotoxin at different circadian times display circadian rhythms in TNF-alpha and IL-6 secretion. Interestingly, we found that these rhythms are not driven by systemic glucocorticoid variations nor are they due to the detected circadian fluctuation in the cellular constitution of the spleen. Rather, a local circadian clock operative in splenic macrophages likely governs these oscillations as indicated by endotoxin stimulation experiments in rhythmic primary cell cultures. On the molecular level, we show that >8% of the macrophage transcriptome oscillates in a circadian fashion, including many important regulators for pathogen recognition and cytokine secretion. As such, understanding the cross-talk between the circadian clock and the immune system provides insights into the timing mechanism of physiological and pathophysiological immune functions.


Assuntos
Ritmo Circadiano/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Animais , Regulação da Expressão Gênica , Imunidade Inata , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Linfonodos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , RNA Mensageiro/análise , Baço/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA