Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
PLoS Genet ; 19(2): e1010410, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780565

RESUMO

Admixture graphs are mathematical structures that describe the ancestry of populations in terms of divergence and merging (admixing) of ancestral populations as a graph. An admixture graph consists of a graph topology, branch lengths, and admixture proportions. The branch lengths and admixture proportions can be estimated using numerous numerical optimization methods, but inferring the topology involves a combinatorial search for which no polynomial algorithm is known. In this paper, we present a reversible jump MCMC algorithm for sampling high-probability admixture graphs and show that this approach works well both as a heuristic search for a single best-fitting graph and for summarizing shared features extracted from posterior samples of graphs. We apply the method to 11 Native American and Siberian populations and exploit the shared structure of high-probability graphs to characterize the relationship between Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the Saqqaq is not a good proxy for the previously identified gene flow from Arctic people into the Na-Dene speaking Athabascans.


Assuntos
Indígena Americano ou Nativo do Alasca , Genética Populacional , Humanos , Indígena Americano ou Nativo do Alasca/genética , Teorema de Bayes , Fluxo Gênico
2.
Proc Natl Acad Sci U S A ; 119(24): e2200016119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666863

RESUMO

The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.


Assuntos
Evolução Biológica , Hibridização Genética , Ursidae , Animais , Fluxo Gênico , Genoma/genética , Filogenia , Ursidae/genética
3.
Heredity (Edinb) ; 125(1-2): 15-27, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346130

RESUMO

Populations of the common chimpanzee (Pan troglodytes) are in an impending risk of going extinct in the wild as a consequence of damaging anthropogenic impact on their natural habitat and illegal pet and bushmeat trade. Conservation management programmes for the chimpanzee have been established outside their natural range (ex situ), and chimpanzees from these programmes could potentially be used to supplement future conservation initiatives in the wild (in situ). However, these programmes have often suffered from inadequate information about the geographical origin and subspecies ancestry of the founders. Here, we present a newly designed capture array with ~60,000 ancestry informative markers used to infer ancestry of individual chimpanzees in ex situ populations and determine geographical origin of confiscated sanctuary individuals. From a test panel of 167 chimpanzees with unknown origins or subspecies labels, we identify 90 suitable non-admixed individuals in the European Association of Zoos and Aquaria (EAZA) Ex situ Programme (EEP). Equally important, another 46 individuals have been identified with admixed subspecies ancestries, which therefore over time, should be naturally phased out of the breeding populations. With potential for future re-introduction to the wild, we determine the geographical origin of 31 individuals that were confiscated from the illegal trade and demonstrate the promises of using non-invasive sampling in future conservation action plans. Collectively, our genomic approach provides an exemplar for ex situ management of endangered species and offers an efficient tool in future in situ efforts to combat the illegal wildlife trade.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Pan troglodytes , Animais , Ecossistema , Pan troglodytes/genética
4.
Methods Mol Biol ; 2090: 167-189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31975168

RESUMO

Coalescence theory lets us probe the past demographics of present-day genetic samples and much information about the past can be gleaned from variation in rates of coalescence event as we trace genetic lineages back in time. Fewer and fewer lineages will remain, however, so there is a limit to how far back we can explore. Without recombination, we would not be able to explore ancient speciation events because of this-any meaningful species concept would require that individuals of one species are closer related than they are to individuals of another species, once speciation is complete. Recombination, however, opens a window to the deeper past. By scanning along a genomic alignment, we get a sequential variant of the coalescence process as it looked at the time of the speciation. This pattern of coalescence times is fixed at speciation time and does not erode with time; although accumulated mutations and genomic rearrangements will eventually hide the signal, it enables us to glance at events in the past that would not be observable without recombination. So-called coalescence hidden Markov models allow us to exploit this, and in this chapter, we present the tool Jocx that uses a framework of these models to infer demographic parameters in ancient speciation events.


Assuntos
DNA Antigo/análise , Genética Populacional/métodos , Genômica/métodos , Algoritmos , Evolução Molecular , Variação Genética , Humanos , Cadeias de Markov , Modelos Genéticos , Alinhamento de Sequência
5.
Genome Res ; 29(9): 1506-1520, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31362936

RESUMO

Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.


Assuntos
Peixes/genética , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Evolução Molecular , Genética Populacional , Humanos , Modelos Genéticos , Seleção Genética
6.
Methods Mol Biol ; 1910: 533-553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278676

RESUMO

In this chapter, we give a short introduction to the genetics of complex diseases emphasizing evolutionary models for disease genes and the effect of different models on the genetic architecture, and we give a survey of the state-of-the-art of genome-wide association studies (GWASs).


Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Alelos , Biologia Computacional/métodos , Fatores de Confusão Epidemiológicos , Evolução Molecular , Frequência do Gene , Humanos , Modelos Genéticos , Modelos Estatísticos
7.
Plant Cell ; 31(7): 1466-1487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023841

RESUMO

The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.


Assuntos
Genômica , Poliploidia , Trifolium/genética , Vias Biossintéticas/genética , Mapeamento Cromossômico , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Geografia , Hibridização Genética , Camada de Gelo , Fatores de Tempo
8.
Nat Ecol Evol ; 3(5): 859, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988499

RESUMO

In the version of this article initially published, Tomas Marques-Bonet was missing the following affiliations: Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; and Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain. The affiliations have been added in the PDF and HTML versions of the article.

9.
Sci Adv ; 5(1): eaau6947, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30854422

RESUMO

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.


Assuntos
Evolução Biológica , Genômica/métodos , Papio/genética , Animais , Sequência de Bases , Feminino , Fluxo Gênico , Haplótipos/genética , Humanos , Hibridização Genética , Masculino , Filogenia , Polimorfismo Genético , Sequenciamento Completo do Genoma
10.
Nat Ecol Evol ; 3(2): 286-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664699

RESUMO

The human mutation rate per generation estimated from trio sequencing has revealed an almost linear relationship with the age of the father and the age of the mother, with fathers contributing about three times as many mutations per year as mothers. The yearly trio-based mutation rate estimate of around 0.43 × 10-9 is markedly lower than previous indirect estimates of about 1 × 10-9 per year from phylogenetic comparisons of the great apes calibrated by fossil evidence. This suggests either a slowdown in the accumulation of mutations per year in the human lineage over the past 10 million years or an inaccurate interpretation of the fossil record. Here we inferred de novo mutations in chimpanzee, gorilla, and orangutan parent-offspring trios. Extrapolating the relationship between the mutation rate and the age of parents from humans to these other great apes, we estimated that each species has higher mutation rates per year by factors of 1.50 ± 0.10, 1.51 ± 0.23, and 1.42 ± 0.22 for chimpanzee, gorilla, and orangutan, respectively, and by a factor of 1.48 ± 0.08 for the three species combined. These estimates suggest an appreciable slowdown in the yearly mutation rate in the human lineage that is likely to be recent as genome comparisons almost adhere to a molecular clock. If the nonhuman rates rather than the human rate are extrapolated over the phylogeny of the great apes, we estimate divergence and speciation times that are much more in line with the fossil record and the biogeography.


Assuntos
Evolução Molecular , Variação Genética , Hominidae/genética , Mutação , Animais , Evolução Biológica , Fósseis , Filogenia
11.
Proc Natl Acad Sci U S A ; 115(11): E2566-E2574, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483247

RESUMO

Elephantids are the world's most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant's ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species.


Assuntos
Elefantes/genética , Mamutes/genética , Mastodontes/genética , Animais , Elefantes/classificação , Evolução Molecular , Extinção Biológica , Fósseis , Fluxo Gênico , Genoma , Genômica/história , História Antiga , Mamutes/classificação , Mastodontes/classificação , Filogenia
12.
Genome Res ; 27(9): 1597-1607, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28774965

RESUMO

Genes in the major histocompatibility complex (MHC, also known as HLA) play a critical role in the immune response and variation within the extended 4-Mb region shows association with major risks of many diseases. Yet, deciphering the underlying causes of these associations is difficult because the MHC is the most polymorphic region of the genome with a complex linkage disequilibrium structure. Here, we reconstruct full MHC haplotypes from de novo assembled trios without relying on a reference genome and perform evolutionary analyses. We report 100 full MHC haplotypes and call a large set of structural variants in the regions for future use in imputation with GWAS data. We also present the first complete analysis of the recombination landscape in the entire region and show how balancing selection at classical genes have linked effects on the frequency of variants throughout the region.


Assuntos
Variação Genética/genética , Genética Populacional , Desequilíbrio de Ligação/genética , Complexo Principal de Histocompatibilidade/genética , Alelos , Mapeamento Cromossômico , Dinamarca , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
13.
Nature ; 548(7665): 87-91, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28746312

RESUMO

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Assuntos
Variação Genética/genética , Genética Populacional/normas , Genoma Humano/genética , Genômica/normas , Análise de Sequência de DNA/normas , Adulto , Alelos , Criança , Cromossomos Humanos Y/genética , Dinamarca , Feminino , Haplótipos/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Masculino , Idade Materna , Taxa de Mutação , Idade Paterna , Mutação Puntual/genética , Padrões de Referência
14.
Bioinformatics ; 33(14): 2148-2155, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334108

RESUMO

MOTIVATION: Structure methods are highly used population genetic methods for classifying individuals in a sample fractionally into discrete ancestry components. CONTRIBUTION: We introduce a new optimization algorithm for the classical STRUCTURE model in a maximum likelihood framework. Using analyses of real data we show that the new method finds solutions with higher likelihoods than the state-of-the-art method in the same computational time. The optimization algorithm is also applicable to models based on genotype likelihoods, that can account for the uncertainty in genotype-calling associated with Next Generation Sequencing (NGS) data. We also present a new method for estimating population trees from ancestry components using a Gaussian approximation. Using coalescence simulations of diverging populations, we explore the adequacy of the STRUCTURE-style models and the Gaussian assumption for identifying ancestry components correctly and for inferring the correct tree. In most cases, ancestry components are inferred correctly, although sample sizes and times since admixture can influence the results. We show that the popular Gaussian approximation tends to perform poorly under extreme divergence scenarios e.g. with very long branch lengths, but the topologies of the population trees are accurately inferred in all scenarios explored. The new methods are implemented together with appropriate visualization tools in the software package Ohana. AVAILABILITY AND IMPLEMENTATION: Ohana is publicly available at https://github.com/jade-cheng/ohana . In addition to source code and installation instructions, we also provide example work-flows in the project wiki site. CONTACT: jade.cheng@birc.au.dk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genética Populacional/métodos , Filogenia , Grupos Populacionais/genética , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Grupos Populacionais/classificação
15.
Bioinformatics ; 33(11): 1738-1740, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158333

RESUMO

SUMMARY: Admixture graphs generalize phylogenetic trees by allowing genetic lineages to merge as well as split. In this paper we present the R package admixturegraph containing tools for building and visualizing admixture graphs, for fitting graph parameters to genetic data, for visualizing goodness of fit and for evaluating the relative goodness of fit between different graphs. AVAILABILITY AND IMPLEMENTATION: GitHub: https://github.com/mailund/admixture_graph and CRAN: https://cran.r-project.org/web/packages/admixturegraph . CONTACT: mailund@birc.au.dk .


Assuntos
Genética Populacional/métodos , Filogenia , Análise de Sequência de DNA/métodos , Software , Animais , Humanos
16.
Proc Natl Acad Sci U S A ; 114(7): 1613-1618, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137852

RESUMO

Quantifying the number of selective sweeps and their combined effects on genomic diversity in humans and other great apes is notoriously difficult. Here we address the question using a comparative approach to contrast diversity patterns according to the distance from genes in all great ape taxa. The extent of diversity reduction near genes compared with the rest of intergenic sequences is greater in a species with larger effective population size. Also, the maximum distance from genes at which the diversity reduction is observed is larger in species with large effective population size. In Sumatran orangutans, the overall genomic diversity is ∼30% smaller than diversity levels far from genes, whereas this reduction is only 9% in humans. We show by simulation that selection against deleterious mutations in the form of background selection is not expected to cause these differences in diversity among species. Instead, selective sweeps caused by positive selection can reduce diversity level more severely in a large population if there is a higher number of selective sweeps per unit time. We discuss what can cause such a correlation, including the possibility that more frequent sweeps in larger populations are due to a shorter waiting time for the right mutations to arise.


Assuntos
Genoma/genética , Hominidae/genética , Modelos Genéticos , Seleção Genética , Animais , Evolução Molecular , Hominidae/classificação , Humanos , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Especificidade da Espécie
17.
Genome Biol ; 17(1): 251, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27964752

RESUMO

BACKGROUND: Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. RESULTS: We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. CONCLUSIONS: The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.


Assuntos
Genética Populacional , Genoma , Lynx/genética , Animais , Espécies em Perigo de Extinção , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
18.
Mol Biol Evol ; 33(12): 3065-3074, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27660295

RESUMO

The contribution from selective sweeps to variation in genetic diversity has proven notoriously difficult to assess, in part because polymorphism data only allows detection of sweeps in the most recent few hundred thousand years. Here, we show how linked selection in ancestral species can be quantified across evolutionary timescales by analyzing patterns of incomplete lineage sorting (ILS) along the genomes of closely related species. We show that sweeps in the human-chimpanzee and human-orangutan ancestors can be identified as depletions of ILS in regions in excess of 100 kb in length. Sweeps predicted in each ancestral species, as well as recurrent sweeps predicted in both species, often overlap sweeps predicted in humans. This suggests that many genomic regions experience recurrent selective sweeps. By comparing the ILS patterns along the genomes of the closely related human-chimpanzee and human-orangutan ancestors, we are further able to quantify the impact of selective sweeps relative to that of background selection. Compared with the human-orangutan ancestor, the human-chimpanzee ancestor shows a strong excess of regions depleted of ILS as well as a stronger reduction in ILS around genes. We conclude that sweeps play a strong role in reducing diversity along the genome and that sweeps have reduced diversity in the human-chimpanzee ancestor much more than in the human-orangutan ancestor.


Assuntos
Evolução Biológica , Primatas/genética , Animais , Especiação Genética , Variação Genética , Genômica/métodos , Humanos , Modelos Genéticos , Polimorfismo Genético , Primatas/metabolismo , Seleção Genética , Análise de Sequência de DNA/métodos
19.
Genetics ; 204(2): 711-722, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27535931

RESUMO

Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country.


Assuntos
Demografia , Genética Populacional , Genômica , Adolescente , Antropometria , Dinamarca , Feminino , Genoma Humano , Humanos , Masculino , Densidade Demográfica
20.
PLoS One ; 11(8): e0161822, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27571202

RESUMO

Scientific outreach delivers science to the people. But it can also deliver people to the science. In this work, we report our experience from a large-scale public engagement project promoting genomic literacy among Danish high school students with the additional benefit of collecting data for studying the genetic makeup of the Danish population. Not only did we confirm that students have a great interest in their genetic past, but we were also gratified to see that, with the right motivation, adolescents can provide high-quality data for genetic studies.


Assuntos
Genômica/economia , Ciência/educação , Adolescente , Adulto , Dinamarca , Feminino , Humanos , Masculino , Autorrelato , Estudantes/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA