Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401110, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864352

RESUMO

Multi-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behavior in vitro. However, in vivo tissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds and in vivo bioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform for in vivo and in situ manufacturing of microimplants raised from synthetic polymer-based inks is currently missing. Here, a platform for minimal-invasive manufacturing of microimplants directly in the organism is presented by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, first applicational examples of biological responses to in situ printed microimplants are demonstrated in the teleost fish Oryzias latipes and in embryos of the fruit fly Drosophila melanogaster. This provides a framework for future studies addressing the suitability of inks for in vivo 3D manufacturing. The platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.

2.
Adv Mater ; 36(11): e2310100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935054

RESUMO

Since the pioneering work of Kawata and colleagues in 1997, multi-photon 3D laser printing, also known as direct laser writing, has made significant advancements in a wide range of fields. Moreover, the development and commercialization of photocurable inks for this technique have expanded rapidly. One of the current trends is the transition from static to active printable materials, often referred to as 4D microprinting, which enables a new degree of control in the printed systems. This review focuses on four primary application areas: microrobotics, optics and photonics, microfluidics, and life sciences, highlighting recent progress and the crucial role of active materials, including liquid crystalline elastomers, hydrogels, shape memory polymers, and composites, among others. It also addresses ongoing challenges and provides insights into the future prospects in the different fields.

3.
Chemistry ; 27(16): 5120-5124, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33481319

RESUMO

Structural constraint represents an attractive tool to modify p-block element properties without the need for unusual oxidation or valence states. The recently reported methyl-calix[4]pyrrolato aluminate established the effect of forcing a tetrahedral aluminum anion into a square-planar coordination mode. However, the generality of this structural motif and any consequence of ligand modification remained open. Herein, a systematic ligand screening was launched, and the class of square-planar aluminum anions was extended by two derivatives that differ in the meso-substitution at the calix[4]pyrrolato ligand. Strikingly, this modification provoked opposing trends in the preference for a Lewis acidic binding mode with σ-donors versus the aluminum-ligand cooperative binding mode with carbonyls. Insights into the origin of these counterintuitive experimental observations were provided by computation and bond analysis. Importantly, this rationale might allow to exploit mode-selective binding for catalytic rate control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA