Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cancer Metab ; 9(1): 24, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011385

RESUMO

BACKGROUND: Neuroblastoma accounts for 7% of paediatric malignancies but is responsible for 15% of all childhood cancer deaths. Despite rigorous treatment involving chemotherapy, surgery, radiotherapy and immunotherapy, the 5-year overall survival rate of high-risk disease remains < 40%, highlighting the need for improved therapy. Since neuroblastoma cells exhibit aberrant metabolism, we determined whether their sensitivity to radiotherapy could be enhanced by drugs affecting cancer cell metabolism. METHODS: Using a panel of neuroblastoma and glioma cells, we determined the radiosensitising effects of inhibitors of glycolysis (2-DG) and mitochondrial function (metformin). Mechanisms underlying radiosensitisation were determined by metabolomic and bioenergetic profiling, flow cytometry and live cell imaging and by evaluating different treatment schedules. RESULTS: The radiosensitising effects of 2-DG were greatly enhanced by combination with the antidiabetic biguanide, metformin. Metabolomic analysis and cellular bioenergetic profiling revealed this combination to elicit severe disruption of key glycolytic and mitochondrial metabolites, causing significant reductions in ATP generation and enhancing radiosensitivity. Combination treatment induced G2/M arrest that persisted for at least 24 h post-irradiation, promoting apoptotic cell death in a large proportion of cells. CONCLUSION: Our findings demonstrate that the radiosensitising effect of 2-DG was significantly enhanced by its combination with metformin. This clearly demonstrates that dual metabolic targeting has potential to improve clinical outcomes in children with high-risk neuroblastoma by overcoming radioresistance.

2.
Oncotarget ; 10(7): 749-759, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30774777

RESUMO

Although radiotherapy is often used to treat localized disease and for palliative care in prostate cancer patients, novel methods are required to improve the sensitivity of aggressive disease to ionizing radiation. AMP-activated protein kinase (AMPK) is an energy sensor which regulates proliferation, aggressiveness and survival of cancer cells. We assessed the ability of the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) to sensitize prostate cancer cells to radiation. Prostate cancer cell lines LNCaP and PC3 were treated with X-rays and AICAR then assessed for clonogenic survival, spheroid growth delay, cell cycle progression, and AMPK and p53 activity. AICAR synergistically enhanced the clonogenic killing capacity, spheroid growth inhibition and pro-apoptotic effect of X-rays. The mechanism of radiosensitization appeared to involve cell cycle regulation, but not oxidative stress. Moreover, it was not dependent on p53 status. Treatment of PC3 cells with a fatty acid synthase inhibitor further enhanced clonogenic killing of the combination of X-rays and AICAR, whereas mTOR inhibition caused no additional enhancement. These results indicate that interference with metabolic signalling pathways which protect cells against irradiation have the potential to enhance radiotherapy. Activation of AMPK in combination with radiotherapy has the potential to target metabolically active and aggressive tumors which are currently untreatable.

3.
Int J Radiat Biol ; 93(2): 194-203, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27600766

RESUMO

PURPOSE: Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. Although ionizing radiation is used to treat localized and metastatic prostate cancer, the most efficient use of radiotherapy is yet to be defined. Our purpose was to determine in vitro the potential benefit to be gained by combining radiation treatment with cytotoxic drugs. MATERIALS AND METHODS: Inhibitors of DNA repair and heat shock protein 90 and an inducer of oxidative stress were evaluated in combination with X-radiation for their capacity to reduce clonogenic survival and delay the growth of multicellular tumor spheroids. RESULTS: Inhibitors of the PARP DNA repair pathway, olaparib and rucaparib, and the HSP90 inhibitor 17-DMAG, enhanced the clonogenic cell kill and spheroid growth delay induced by X-radiation. However, the oxidative stress-inducing drug elesclomol failed to potentiate the effects of X-radiation. PARP inhibitors arrested cells in the G2/M phase when administered as single agents or in combination with radiation, whereas elesclomol and 17-DMAG did not affect radiation-induced cell cycle modulation. CONCLUSION: These results indicate that radiotherapy of prostate cancer may be optimized by combination with inhibitors of PARP or HSP90, but not elesclomol.


Assuntos
Antineoplásicos/administração & dosagem , Quimiorradioterapia/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/patologia , Tolerância a Radiação/efeitos da radiação , Radiossensibilizantes/administração & dosagem , Resultado do Tratamento
4.
Chirality ; 29(1): 10-13, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27901292

RESUMO

The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer-killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase-1. C75 is administered in the form of a racemic mixture of (-) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase-1. Therefore, we assessed the relative cancer-killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (-)-C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)-C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor-killing activity of ionizing radiation, while minimizing weight loss in cancer patients.


Assuntos
Carnitina O-Palmitoiltransferase/química , Ácido Graxo Sintases/química , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Humanos , Masculino , Estereoisomerismo
5.
BMC Cancer ; 16: 621, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515310

RESUMO

BACKGROUND: The radiopharmaceutical (131)I-meta-iodobenzylguanidine ((131)I-MIBG) is an effective treatment for neuroblastoma. However, maximal therapeutic benefit from (131)I-MIBG is likely to be obtained by its combination with chemotherapy. We previously reported enhanced antitumour efficacy of (131)I-MIBG by inhibition of the poly(ADP-ribose) polymerase-1 (PARP-1) DNA repair pathway using the phenanthridinone derivative PJ34. Recently developed alternative PARP-1 inhibitors have greater target specificity and are expected to be associated with reduced toxicity to normal tissue. Therefore, our purpose was to determine whether the more specific PARP-1 inhibitors rucaparib and olaparib enhanced the efficacy of X-radiation or (131)I-MIBG. METHODS: Radiosensitisation of SK-N-BE(2c) neuroblastoma cells or noradrenaline transporter gene-transfected glioma cells (UVW/NAT) was investigated using clonogenic assay. Propidium iodide staining and flow cytometry was used to analyse cell cycle progression. DNA damage was quantified by the phosphorylation of H2AX (γH2AX). RESULTS: By combining PARP-1 inhibition with radiation treatment, it was possible to reduce the X-radiation dose or (131)I-MIBG activity concentration required to achieve 50 % cell kill by approximately 50 %. Rucaparib and olaparib were equally effective inhibitors of PARP-1 activity. X-radiation-induced DNA damage was significantly increased 2 h after irradiation by combination with PARP-1 inhibitors (10-fold greater DNA damage compared to untreated controls; p < 0.01). Moreover, combination treatment (i) prevented the restitution of DNA, exemplified by the persistence of 3-fold greater DNA damage after 24 h, compared to untreated controls (p < 0.01) and (ii) induced greater G2/M arrest (p < 0.05) than either single agent alone. CONCLUSION: Rucaparib and olaparib sensitise cancer cells to X-radiation or (131)I-MIBG treatment. It is likely that the mechanism of radiosensitisation entails the accumulation of unrepaired radiation-induced DNA damage. Our findings suggest that the administration of PARP-1 inhibitors and (131)I-MIBG to high risk neuroblastoma patients may be beneficial.


Assuntos
Indóis/farmacologia , Neuroblastoma/terapia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Dano ao DNA , Reparo do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Neuroblastoma/enzimologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo
6.
J Pharm Pharmacol ; 68(7): 912-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27139157

RESUMO

OBJECTIVES: Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. (131) I-MIP-1095 is a recently developed prostate-specific membrane antigen (PSMA)-targeting, small molecular weight radiopharmaceutical which has anti-tumour activity as a single agent. Our purpose was to determine in vitro the potential benefit to be gained by combining (131) I-MIP-1095 with cytotoxic drug treatments. METHODS: Various cytotoxic agents were evaluated in combination with (131) I-MIP-1095 for their capacity to delay the growth of LNCaP cells cultured as multicellular tumour spheroids. Two end-points were used to assess treatment efficacy: (i) the time required for doubling of spheroid volume and (ii) the area under the volume-time growth curves. KEY FINDINGS: The PARP-1 inhibitor olaparib, the topoisomerase I inhibitor topotecan, the proteasome inhibitor bortezomib, the inhibitor of the P53-MDM2 interaction nutlin-3 and the copper-chelated form of the oxidising agent disulfiram (DSF:Cu) all significantly enhanced the inhibition of the growth of spheroids induced by (131) I-MIP-1095. However, the Chk1 inhibitor AZD7762 failed to potentiate the effect of (131) I-MIP-1095. CONCLUSIONS: These results indicate that targeted radiotherapy of prostate cancer may be optimised by combining its administration with chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Glutamatos/farmacologia , Terapia de Alvo Molecular/métodos , Próstata/efeitos dos fármacos , Ureia/análogos & derivados , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dissulfiram/farmacologia , Glutamatos/farmacocinética , Humanos , Imidazóis/farmacologia , Radioisótopos do Iodo/farmacocinética , Radioisótopos do Iodo/farmacologia , Masculino , Ftalazinas/farmacologia , Piperazinas/farmacologia , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Esferoides Celulares/efeitos dos fármacos , Tiofenos/farmacologia , Topotecan/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Ureia/farmacocinética , Ureia/farmacologia
7.
Antioxid Redox Signal ; 25(8): 467-84, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27224059

RESUMO

AIMS: We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). RESULTS: We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-ß-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. INNOVATION: Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. CONCLUSION: Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Elétrons , Estresse Oxidativo/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Técnicas de Inativação de Genes , Genes p53 , Células HCT116 , Humanos , Imunoconjugados/farmacologia , Radioisótopos do Iodo/efeitos adversos , Sistema de Sinalização das MAP Quinases , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos da radiação , Modelos Biológicos , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Radiat Res ; 184(5): 482-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26484401

RESUMO

Many common human cancers, including colon, prostate and breast cancer, express high levels of fatty acid synthase compared to normal human tissues. This elevated expression is associated with protection against apoptosis, increased metastasis and poor prognosis. Inhibitors of fatty acid synthase, such as the cerulenin synthetic analog C75, decrease prostate cancer cell proliferation, increase apoptosis and decrease tumor growth in experimental models. Although radiotherapy is widely used in the treatment of prostate cancer patients, the risk of damage to neighboring normal organs limits the radiation dose that can be delivered. In this study, we examined the potential of fatty acid synthase inhibition to sensitize prostate cancer cells to radiotherapy. The efficacy of C75 alone or in combination with X irradiation was examined in monolayers and in multicellular tumor spheroids. Treatment with C75 alone decreased clonogenic survival, an effect that was abrogated by the antioxidant. C75 treatment also delayed spheroid growth in a concentration-dependent manner. The radiosensitizing effect of C75 was indicated by combination index values between 0.65 and 0.71 and the reduced surviving fraction of clonogens, in response to 2 Gy X irradiation, from 0.51 to 0.30 and 0.11 in the presence of 25 and 35 µM C75, respectively. This increased sensitivity to radiation was reduced by the presence of the antioxidant. The C75 treatment also enhanced the spheroid growth delay induced by X irradiation in a supra-additive manner. The level of radiation-induced apoptosis in prostate cancer cells was increased further by C75, which induced cell cycle arrest in the G2/M phase, but only at a concentration greater than that required for radiosensitization. Radiation-induced G2/M blockade was not affected by C75 treatment. These results suggest the potential use of fatty acid synthase inhibition to enhance the efficacy of radiotherapy of prostate carcinoma and that C75-dependent cell cycle arrest is not responsible for its radiosensitizing effect.


Assuntos
4-Butirolactona/análogos & derivados , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Neoplasias da Próstata/patologia , Tolerância a Radiação/efeitos dos fármacos , 4-Butirolactona/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/efeitos da radiação , Raios X
9.
EJNMMI Res ; 3(1): 73, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24219987

RESUMO

BACKGROUND: The radiopharmaceutical 131I-metaiodobenzylguanidine (131I-MIBG) is used for the targeted radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of 131I-MIBG's efficacy is achieved by combination with the topoisomerase I inhibitor topotecan - currently being evaluated clinically. Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in combination with 131I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the alternative proteasome inhibitor, MG132. METHODS: Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation was assessed using antioxidants. RESULTS: Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2c) and UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with X-radiation, with 131I-MIBG, or with 131I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the growth of human tumour xenografts in athymic mice when administered in combination with 131I-MIBG and topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity was ROS-dependent. CONCLUSIONS: Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with 131I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.

10.
J Nucl Med ; 54(6): 953-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616582

RESUMO

UNLABELLED: Disulfiram has been used for several decades in the treatment of alcoholism. It now shows promise as an anticancer drug and radiosensitizer. Proposed mechanisms of action include the induction of oxidative stress and inhibition of proteasome activity. Our purpose was to determine the potential of disulfiram to enhance the antitumor efficacy of external-beam γ-irradiation and (131)I-metaiodobenzylguanidine ((131)I-MIBG), a radiopharmaceutical used for the therapy of neuroendocrine tumors. METHODS: The role of copper in disulfiram-induced toxicity was investigated by clonogenic assay after treatment of human SK-N-BE(2c) neuroblastoma and UVW/noradrenaline transporter (NAT) glioma cells. The synergistic interaction between disulfiram and radiotherapy was evaluated by combination-index analysis. Tumor growth delay was determined in vitro using multicellular tumor spheroids and in vivo using human tumor xenografts in athymic mice. RESULTS: Escalating the disulfiram dosage caused a biphasic reduction in the surviving fraction of clonogens. Clonogenic cell kill after treatment with disulfiram concentrations less than 4 µM was copper-dependent, whereas cytotoxicity at concentrations greater than 10 µM was caused by oxidative stress. The cytotoxic effect of disulfiram was maximal when administered with equimolar copper. Likewise, disulfiram radiosensitization of tumor cells was copper-dependent. Furthermore, disulfiram treatment enhanced the toxicity of (131)I-MIBG to spheroids and xenografts expressing the noradrenaline transporter. CONCLUSION: The results demonstrate that the cytotoxicity of disulfiram was copper-dependent, the molar excess of disulfiram relative to copper resulted in attenuation of disulfiram-mediated cytotoxicity, copper was required for the radiosensitizing activity of disulfiram, and copper-complexed disulfiram enhanced the efficacy not only of external-beam radiation but also of targeted radionuclide therapy in the form of (131)I-MIBG. Therefore, disulfiram may have anticancer potential in combination with radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Cobre/metabolismo , Dissulfiram/farmacologia , Tolerância a Radiação/efeitos dos fármacos , 3-Iodobenzilguanidina/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Transformação Celular Neoplásica , Relação Dose-Resposta a Droga , Feminino , Raios gama/uso terapêutico , Humanos , Camundongos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/efeitos da radiação
11.
Radiat Res ; 179(3): 282-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23336184

RESUMO

The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with γ radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Raios gama , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Regiões Promotoras Genéticas , Transgenes , Linhagem Celular Tumoral , Humanos , Reação em Cadeia da Polimerase em Tempo Real
12.
J Nucl Med ; 53(7): 1146-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22689924

RESUMO

UNLABELLED: Targeted radiotherapy using (131)I-metaiodobenzylguanidine ((131)I-MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining (131)I-MIBG with the topoisomerase I inhibitor topotecan induced long-term DNA damage and supraadditive toxicity to noradrenaline transporter (NAT)-expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP-1) inhibition, in vitro and in vivo, to further enhance (131)I-MIBG/topotecan efficacy. METHODS: Combinations of topotecan and the PARP-1 inhibitor PJ34 were assessed for synergism in vitro by combination-index analysis in SK-N-BE(2c) (neuroblastoma) and UVW/NAT (NAT-transfected glioma) cells. Three treatment schedules were evaluated: topotecan administered 24 h before, 24 h after, or simultaneously with PJ34. Combinations of PJ34 and (131)I-MIBG and of PJ34 and (131)I-MIBG/topotecan were also assessed using similar scheduling. In vivo efficacy was measured by growth delay of tumor xenografts. We also assessed DNA damage by γH2A.X assay, cell cycle progression by fluorescence-activated cell sorting analysis, and PARP-1 activity in treated cells. RESULTS: In vitro, only simultaneous administration of topotecan and PJ34 or PJ34 and (131)I-MIBG induced supraadditive toxicity in both cell lines. All scheduled combinations of PJ34 and (131)I-MIBG/topotecan induced supraadditive toxicity and increased DNA damage in SK-N-BE(2c) cells, but only simultaneous administration induced enhanced efficacy in UVW/NAT cells. The PJ34 and (131)I-MIBG/topotecan combination treatment induced G(2) arrest in all cell lines, regardless of the schedule of delivery. In vivo, simultaneous administration of PJ34 and (131)I-MIBG/topotecan significantly delayed the growth of SK-N-BE(2c) and UVW/NAT xenografts, compared with (131)I-MIBG/topotecan therapy. CONCLUSION: The antitumor efficacy of topotecan, (131)I-MIBG, and (131)I-MIBG/topotecan combination treatment was increased by PARP-1 inhibition in vitro and in vivo.


Assuntos
3-Iodobenzilguanidina/toxicidade , Antineoplásicos/toxicidade , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases , Compostos Radiofarmacêuticos/toxicidade , Topotecan/toxicidade , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/terapia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Química Farmacêutica , Terapia Combinada , Quebras de DNA/efeitos dos fármacos , Quebras de DNA/efeitos da radiação , Feminino , Citometria de Fluxo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neuroblastoma/tratamento farmacológico , Neuroblastoma/radioterapia , Neuroblastoma/terapia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Ensaio Tumoral de Célula-Tronco
13.
J Nucl Med ; 53(4): 647-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22414636

RESUMO

UNLABELLED: Oncolytic herpes viruses show promise for cancer treatment. However, it is unlikely that they will fulfill their therapeutic potential when used as monotherapies. An alternative strategy is to use these viruses not only as oncolytic agents but also as a delivery mechanism of therapeutic transgenes to enhance tumor cell killing. The herpes simplex virus 1 deletion mutant HSV1716 is a conditionally replicating oncolytic virus that selectively replicates in and lyses dividing tumor cells. It has a proven safety profile in clinical trials and has demonstrated efficacy as a gene-delivery vehicle. To enhance its therapeutic potential, we have engineered HSV1716 to convey the noradrenaline transporter (NAT) gene (HSV1716/NAT), whose expression endows infected cells with the capacity to accumulate the noradrenaline analog metaiodobenzylguanidine (MIBG). Thus, the NAT gene-infected cells are susceptible to targeted radiotherapy using radiolabeled (131)I-MIBG, a strategy that has already shown promise for combined targeted radiotherapy-gene therapy in cancer cells after plasmid-mediated transfection. METHODS: We used HSV1716/NAT as a dual cell lysis-gene delivery vehicle for targeting the NAT transgene to human tumor xenografts in vivo. RESULTS: In tumor xenografts that did not express NAT, intratumoral or intravenous injection of HSV1716/NAT induced the capacity for active uptake of (131)I-MIBG. Administration of HSV1716/NAT and (131)I-MIBG resulted in decreased tumor growth and enhanced survival relative to injection of either agent alone. Efficacy was dependent on the scheduling of delivery of the 2 agents. CONCLUSION: These findings support a role for combination radiotherapy-gene therapy for cancer using HSV1716 expressing the NAT transgene and targeted radionuclide therapy.


Assuntos
Técnicas de Transferência de Genes , Glioma/genética , Glioma/radioterapia , Herpesvirus Humano 1/genética , Terapia de Alvo Molecular/métodos , Vírus Oncolíticos/genética , 3-Iodobenzilguanidina/administração & dosagem , 3-Iodobenzilguanidina/farmacocinética , 3-Iodobenzilguanidina/uso terapêutico , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Terapia Combinada , DNA Recombinante/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Deleção de Sequência , Fatores de Tempo
14.
Cancer Biother Radiopharm ; 25(3): 299-308, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20578835

RESUMO

Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting.


Assuntos
3-Iodobenzilguanidina/análogos & derivados , 3-Iodobenzilguanidina/farmacocinética , 3-Iodobenzilguanidina/uso terapêutico , Radioisótopos do Iodo/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , 3-Iodobenzilguanidina/química , 3-Iodobenzilguanidina/farmacologia , Estruturas Animais/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Medula Óssea/metabolismo , Bradicardia/induzido quimicamente , Cães , Eletrocardiografia/efeitos dos fármacos , Feminino , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Radioisótopos do Iodo/uso terapêutico , Marcação por Isótopo/métodos , Masculino , Camundongos , Camundongos Nus , Miocárdio/metabolismo , Neuroblastoma/patologia , Neuroblastoma/radioterapia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Pharm Pharmacol ; 60(8): 951-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18644188

RESUMO

The efficacy of radiotherapy may be partly dependent on indirect effects, which can sterilise malignant cells that are not directly irradiated. However, little is known of the influence of these effects in targeted radionuclide treatment of cancer. We determined bystander responses generated by the uptake of radioiodinated iododeoxyuridine ([*I]IUdR) and radiohaloanalogues of meta-iodobenzylguanidine ([*I]MIBG) by noradrenaline transporter (NAT) gene-transfected tumour cells. NAT specifically accumulates MIBG. Multicellular spheroids that consisted of 5% of NAT-expressing cells, capable of the active uptake of radiopharmaceutical, were sterilised by treatment with 20 kBqmL(-1) of the alpha-emitter meta-[211At]astatobenzylguanidine ([211At]MABG). Similarly, in nude mice, retardation of the growth of tumour xenografts containing 5% NAT-positivity was observed after treatment with [131I]MIBG. To determine the effect of subcellular localisation of radiolabelled drugs, we compared the bystander effects resulting from the intracellular concentration of [131I]MIBG and [131I]IUdR (low linear energy transfer (LET) beta-emitters) as well as [123I]MIBG and [123I]IUdR (high LET Auger electron emitters). [*I]IUdR is incorporated in DNA whereas [*I]MIBG accumulates in extranuclear sites. Cells exposed to media from [131I]MIBG- or [131I]IUdR-treated cells demonstrated a dose-response relationship with respect to clonogenic cell death. In contrast, cells receiving media from cultures treated with [123I]MIBG or [123I]IUdR exhibited dose-dependent toxicity at low dose but elimination of cytotoxicity with increasing radiation dose (i.e. U-shaped survival curves). Therefore radionuclides emitting high LET radiation may elicit toxic or protective effects on neighbouring untargeted cells at low and high dose respectively. It is concluded that radiopharmaceutical-induced bystander effects may depend on LET of the decay particles but are independent of site of intracellular concentration of radionuclide.


Assuntos
3-Iodobenzilguanidina/farmacologia , Efeito Espectador , Idoxuridina/farmacologia , Neoplasias Experimentais/radioterapia , Compostos Radiofarmacêuticos/farmacologia , 3-Iodobenzilguanidina/análogos & derivados , 3-Iodobenzilguanidina/metabolismo , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Idoxuridina/metabolismo , Radioisótopos do Iodo , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Doses de Radiação , Compostos Radiofarmacêuticos/metabolismo , Esferoides Celulares , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Nucl Med ; 48(9): 1519-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704246

RESUMO

UNLABELLED: For gene therapy to be efficacious in the treatment of cancer, therapeutic transgenes must be limited in their expression to tumor cells and must be expressed at sufficiently high transcriptional levels. Moreover, the inadequacy of gene delivery must be overcome by induction of toxicity to neighboring nontargeted cells. Combining targeted radionuclide therapy with gene therapy using human telomerase promoters has shown promise in these respects, and the efficacy of this scheme has been assessed in vitro using transfectant mosaic tumor spheroids. To enable the evaluation of targeted radiotherapy combined with gene transfer in vivo, we have developed a transfectant mosaic xenograft (TMX) model. METHODS: Human telomerase promoters were used to drive expression of the noradrenaline transporter (NAT) transgene in 2 human cell lines (UVW and EJ138). Promoter activity was assessed in xenografts in nude mice by determination of the uptake of the radiopharmaceutical (131)I-metaiodobenzylguanidine ((131)I-MIBG) and by measurement of tumor growth. The efficacy of (131)I-MIBG treatment was also assessed in TMXs to determine the delay in growth of tumors composed of various proportions of NAT-expressing cells-a likely clinical scenario after gene delivery in vivo. RESULTS: In terms of induction of the capacity for active uptake of (131)I-MIBG and the resultant inhibition of tumor growth in vivo, both telomerase promoters (hTR and hTERT) were similar in potency to the CMV (cytomegalovirus) promoter as controlling elements for the expression of the NAT transgene. In TMXs derived from UVW and EJ138 cells, (131)I-MIBG uptake was proportional to NAT gene expression (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138). Inhibition of the growth of these tumors correlated with the fraction of NAT-transfected cells (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138), and substantial tumor growth delay was observed when 5% of the xenograft was composed of NAT-positive cells. CONCLUSION: TMXs constitute a suitable model to measure the efficacy of cancer gene therapy strategies when <100% of the tumor mass can be targeted to express the therapeutic transgene.


Assuntos
3-Iodobenzilguanidina/uso terapêutico , Terapia Genética , Radioisótopos do Iodo/uso terapêutico , Neoplasias Experimentais/radioterapia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Efeito Espectador , Bovinos , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Regiões Promotoras Genéticas , Transplante Heterólogo
17.
Mutat Res ; 626(1-2): 34-41, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16987695

RESUMO

Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.


Assuntos
Campos Eletromagnéticos , Repetições de Microssatélites/genética , Radiação Ionizante , Sequência de Bases , Linhagem Celular Tumoral , Dano ao DNA , Primers do DNA , Humanos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
18.
Dose Response ; 5(3): 204-13, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18648605

RESUMO

Indirect effects may contribute to the efficacy of radiotherapy by sterilizing malignant cells that are not directly irradiated. However, little is known of the influence of indirect effects in targeted radionuclide treatment. We compared gamma-radiation-induced bystander effects with those resulting from exposure to three radiohaloanalogues of meta-iodoben-zylguanidine (MIBG): [(131)I]MIBG (low linear energy transfer (LET) alpha-emitter), [(123)I]MIBG (high LET Auger electron emitter), and meta-[(211)At]astatobenzylguanidine ([(211)At]MABG) (high LET alpha-emitter). Cells exposed to media from gamma-irradiated cells exhibited a dose-dependent reduction in survival fraction at low dosage and a plateau in cell kill at > 2 Gy. Cells treated with media from [(131)I]MIBG demonstrated a dose-response relationship with respect to clonogenic cell death and no annihilation of this effect at high radiopharmaceutical dosage. In contrast, cells receiving media from cultures treated with [(211)At]MABG or [(123)I]MIBG exhibited dose-dependent toxicity at low dose but elimination of cytotoxicity with increasing radiation dose (i.e. U-shaped survival curves). Therefore radionuclides emitting high LET radiation may elicit toxic or protective effects on neighboring untargeted cells at low and high dose respectively. We conclude that radiopharmaceutical-induced bystander effects may depend on LET and be distinct from those elicited by conventional radiotherapy.

19.
J Nucl Med ; 47(6): 1007-15, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16741311

RESUMO

UNLABELLED: Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). METHODS: Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. RESULTS: Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. CONCLUSION: Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.


Assuntos
Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Glioma/patologia , Glioma/radioterapia , Radioterapia/métodos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/radioterapia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Elétrons/uso terapêutico , Raios gama/uso terapêutico , Humanos , Doses de Radiação , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
20.
J Gene Med ; 8(5): 557-65, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16506247

RESUMO

BACKGROUND: Radiotherapy for the control of cancer, either alone or in conjunction with chemotherapy, is often limited by normal tissue toxicity including haematopoietic toxicity. Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species that are associated with radiation-induced cytotoxicity. The antioxidant enzyme manganese superoxide dismutase (SOD2) catalyzes the dismutation of the superoxide anions into hydrogen peroxide. METHODS: We have investigated the potential of SOD2 overexpression, through retroviral gene transfer using a retrovirus optimized for transcription in early haematopoietic cells, to enhance the radioresistance of a human erythroleukaemic cell line and primary murine bone marrow. Using these as in vitro models we have investigated whether SOD2 gene therapy may be suitable for the protection of the haematopoietic compartment from the effects of ionizing radiation. RESULTS: Here we demonstrate using both biological and physical assays that overexpression of SOD2 protects haematopoietic cells from ionizing radiation injury. Our results show that an increase in the levels of SOD2 enzymatic activity within K562 cells (from 160.7 +/- 23.6 to 321.8 +/- 45.2 U/mg protein) or primary murine haematopoietic progenitor cells leads to both a significant decrease in DNA fragmentation and a significant increase in clonogenic survival, as evident by a significant increase in Dbar (from 2.66 to 3.42Gy), SF2 (from 0.52 to 0.73) values, and a significant decrease in the alpha value (from 0.3040 +/- 0.037 to 0.0630 +/- 0.037 Gy(-1)) when compared either to cells transduced with a retroviral vector encoding eGFP alone or to the parental line. CONCLUSIONS: The results presented suggest that retroviral radioprotective gene therapy may be applicable to the haematopoietic compartment, enabling radiation dose escalation in cancer therapy.


Assuntos
Terapia Genética/métodos , Superóxido Dismutase/genética , Animais , Ensaio de Unidades Formadoras de Colônias , Dano ao DNA , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/enzimologia , Humanos , Técnicas In Vitro , Células K562 , Camundongos , Proteção Radiológica , Retroviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA