Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 14(1): 3244, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277399

RESUMO

Variations of cell-type proportions within tissues could be informative of biological aging and disease risk. Single-cell RNA-sequencing offers the opportunity to detect such differential abundance patterns, yet this task can be statistically challenging due to the noise in single-cell data, inter-sample variability and because such patterns are often of small effect size. Here we present a differential abundance testing paradigm called ELVAR that uses cell attribute aware clustering when inferring differentially enriched communities within the single-cell manifold. Using simulated and real single-cell and single-nucleus RNA-Seq datasets, we benchmark ELVAR against an analogous algorithm that uses Louvain for clustering, as well as local neighborhood-based methods, demonstrating that ELVAR improves the sensitivity to detect cell-type composition shifts in relation to aging, precancerous states and Covid-19 phenotypes. In effect, leveraging cell attribute information when inferring cell communities can denoise single-cell data, avoid the need for batch correction and help retrieve more robust cell states for subsequent differential abundance testing. ELVAR is available as an open-source R-package.


Assuntos
COVID-19 , Análise da Expressão Gênica de Célula Única , Humanos , Análise de Célula Única/métodos , RNA-Seq/métodos , Algoritmos , Análise por Conglomerados , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos
2.
NPJ Regen Med ; 8(1): 16, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922514

RESUMO

We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.

3.
iScience ; 25(12): 105709, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36578319

RESUMO

Cell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entropy of expression covariation patterns and which is applicable to static and dynamically changing cell populations. Using only single-cell RNA-Seq data, DICE is able to predict multipotent primed states and their regulatory factors, which we subsequently validate with single-cell epigenomic data. DICE reveals that primed states are often defined by epigenetic regulators or pioneer factors alongside lineage-specific transcription factors. In developmental time course single-cell RNA-Seq datasets, DICE can pinpoint the timing of bifurcations more precisely than lineage-trajectory inference algorithms or competing variance-based methods. In summary, by studying the dynamic changes of expression covariation entropy, DICE can help elucidate primed states and bifurcation dynamics without the need for single-cell epigenomic data.

4.
Cancer Res ; 82(14): 2520-2537, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35536873

RESUMO

Evidence points toward the differentiation state of cells as a marker of cancer risk and progression. Measuring the differentiation state of single cells in a preneoplastic population could thus enable novel strategies for early detection and risk prediction. Recent maps of somatic mutagenesis in normal tissues from young healthy individuals have revealed cancer driver mutations, indicating that these do not correlate well with differentiation state and that other molecular events also contribute to cancer development. We hypothesized that the differentiation state of single cells can be measured by estimating the regulatory activity of the transcription factors (TF) that control differentiation within that cell lineage. To this end, we present a novel computational method called CancerStemID that estimates a stemness index of cells from single-cell RNA sequencing data. CancerStemID is validated in two human esophageal squamous cell carcinoma (ESCC) cohorts, demonstrating how it can identify undifferentiated preneoplastic cells whose transcriptomic state is overrepresented in invasive cancer. Spatial transcriptomics and whole-genome bisulfite sequencing demonstrated that differentiation activity of tissue-specific TFs was decreased in cancer cells compared with the basal cell-of-origin layer and established that differentiation state correlated with differential DNA methylation at the promoters of these TFs, independently of underlying NOTCH1 and TP53 mutations. The findings were replicated in a mouse model of ESCC development, and the broad applicability of CancerStemID to other cancer-types was demonstrated. In summary, these data support an epigenetic stem-cell model of oncogenesis and highlight a novel computational strategy to identify stem-like preneoplastic cells that undergo positive selection. SIGNIFICANCE: This study develops a computational strategy to dissect the heterogeneity of differentiation states within a preneoplastic cell population, allowing identification of stem-like cells that may drive cancer progression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos
5.
Physiol Genomics ; 54(6): 220-229, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476585

RESUMO

Isogenic populations of mammalian cells exhibit significant gene expression variability. This variability can be separated into two components. Variance arises from events specific to the transcribed gene (i.e., cis or allele-specific sources) and variance from events that impact many genes at once (i.e., trans and global processes). Furthermore, the activity of the different regulatory factors that influence gene expression fluctuates at different timescales. Fast timescales will result in rapid fluctuation of gene expression, whereas slow timescales will result in longer persistence of gene expression levels over time. Here, we investigated sources of gene expression that are intrinsic, i.e., coming from cis-regulatory factors and follow slow timescales. To do so, we developed a reporter system that isolates allele-specific variability and measures its persistence in imaging and long-term fluctuation analysis experiments. Our results identify a new source of gene expression variability that is allele-specific but that fluctuates on timescales of days. We hypothesized that allele-specific fluctuations of epigenetic regulatory factors are responsible for the newly discovered allele-specific and slow source of gene expression variability. Using mathematical modeling, we showed that adding this effect to the two-state model is sufficient to account for all empirical observations. Furthermore, using direct assays of chromatin markers, we find fluctuation in H3K4me3 levels that match the observed changes in gene expression levels providing direct experimental support of our model. Collectively, our work shows that slow fluctuations of regulatory chromatin modifications contribute to the variability in gene expression.


Assuntos
Cromatina , Epigenômica , Alelos , Animais , Cromatina/genética , Epigênese Genética/genética , Expressão Gênica , Mamíferos/genética
6.
Clin Epigenetics ; 14(1): 23, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164838

RESUMO

BACKGROUND: Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified biomarkers, their interpretation and validity is often confounded by cell-type heterogeneity. RESULTS: Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encompassing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin module centered around CTNND2, is inactivated in Barrett's Esophagus, a precursor lesion to EAC. By measuring DNA methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose methylation patterns in saliva correlate with EAC status. CONCLUSIONS: Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibility of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Progressão da Doença , Detecção Precoce de Câncer , Epigênese Genética , Epigenômica , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos
7.
Nat Aging ; 2(6): 548-561, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118452

RESUMO

Transcription factors (TFs) control cell identity and function. How their activity is altered during healthy aging is critical for an improved understanding of aging and disease risk, yet relatively little is known about such changes at cell-type resolution. Here we present and validate a TF activity estimation method for single cells from the hematopoietic system that is based on TF regulons, and apply it to a mouse single-cell RNA-sequencing atlas, to infer age-associated differentiation activity changes in the immune cells of different organs. This revealed an age-associated signature of macrophage dedifferentiation, which is shared across tissue types, and aggravated in tumor-associated macrophages. By extending the analysis to all major cell types, we reveal cell-type and tissue-type-independent age-associated alterations to regulatory factors controlling antigen processing, inflammation, collagen processing and circadian rhythm, that are implicated in age-related diseases. Finally, our study highlights the limitations of using TF expression to infer age-associated changes, underscoring the need to use regulatory activity inference methods.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Diferenciação Celular
8.
Bioinformatics ; 37(11): 1528-1534, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33244588

RESUMO

MOTIVATION: An important task in the analysis of single-cell RNA-Seq data is the estimation of differentiation potency, as this can help identify stem-or-multipotent cells in non-temporal studies or in tissues where differentiation hierarchies are not well established. A key challenge in the estimation of single-cell potency is the need for a fast and accurate algorithm, scalable to large scRNA-Seq studies profiling millions of cells. RESULTS: Here, we present a single-cell potency measure, called Correlation of Connectome and Transcriptome (CCAT), which can return accurate single-cell potency estimates of a million cells in minutes, a 100-fold improvement over current state-of-the-art methods. We benchmark CCAT against 8 other single-cell potency models and across 28 scRNA-Seq studies, encompassing over 2 million cells, demonstrating comparable accuracy than the current state-of-the-art, at a significantly reduced computational cost, and with increased robustness to dropouts. AVAILABILITY AND IMPLEMENTATION: CCAT is part of the SCENT R-package, freely available from https://github.com/aet21/SCENT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Citoplasmático Pequeno , Análise de Célula Única , Diferenciação Celular , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Software
9.
PLoS Comput Biol ; 16(8): e1008011, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797040

RESUMO

The dynamic signal encoding paradigm suggests that information flows from the extracellular environment into specific signaling patterns (encoding) that are then read by downstream effectors to control cellular behavior. Previous work empirically quantified the information content of dynamic signaling patterns. However, whether this information can be faithfully transmitted to the gene expression level is unclear. Here we used NFkB signaling as a model to understand the accuracy of information transmission from signaling dynamics into gene expression. Using a detailed mathematical model, we simulated realistic NFkB signaling patterns with different degrees of variability. The NFkB patterns were used as an input to a simple gene expression model. Analysis of information transmission between ligand and NFkB and ligand and gene expression allows us to determine information loss in transmission between receptors to dynamic signaling patterns and between signaling dynamics to gene expression. Information loss could occur due to biochemical noise or due to a lack of specificity. We found that noise-free gene expression has very little information loss suggesting that gene expression can preserve specificity in NFkB patterns. As expected, the addition of noise to the gene expression model results in information loss. Interestingly, this effect can be mitigated by a specific choice of parameters that can substantially reduce information loss due to biochemical noise during gene expression. Overall our results show that the cellular capacity for information transmission from dynamic signaling patterns to gene expression can be high enough to preserve ligand specificity and thereby the accuracy of cellular response to environmental cues.


Assuntos
NF-kappa B/metabolismo , Transdução de Sinais , Fenômenos Bioquímicos , Expressão Gênica
10.
Cell Stem Cell ; 26(5): 693-706.e9, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302522

RESUMO

During early development, extrinsic triggers prompt pluripotent cells to begin the process of differentiation. When and how human embryonic stem cells (hESCs) irreversibly commit to differentiation is a fundamental yet unanswered question. By combining single-cell imaging, genomic approaches, and mathematical modeling, we find that hESCs commit to exiting pluripotency unexpectedly early. We show that bone morphogenetic protein 4 (BMP4), an important differentiation trigger, induces a subset of early genes to mirror the sustained, bistable dynamics of upstream signaling. Induction of one of these genes, GATA3, drives differentiation in the absence of BMP4. Conversely, GATA3 knockout delays differentiation and prevents fast commitment to differentiation. We show that positive feedback at the level of the GATA3-BMP4 axis induces fast, irreversible commitment to differentiation. We propose that early commitment may be a feature of BMP-driven fate choices and that interlinked feedback is the molecular basis for an irreversible transition from pluripotency to differentiation.


Assuntos
Células-Tronco Embrionárias Humanas , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Fator de Transcrição GATA3/genética , Humanos , Transdução de Sinais
11.
PLoS One ; 10(5): e0123242, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955500

RESUMO

Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions.


Assuntos
Transdução de Sinais , Redes Reguladoras de Genes , Fatores de Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-24730880

RESUMO

We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Modelos Estatísticos , Transdução de Sinais/fisiologia , Simulação por Computador , Processos Estocásticos
13.
Syst Synth Biol ; 8(1): 3-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24592287

RESUMO

The DevRS two component system of Mycobacterium tuberculosis is responsible for its dormancy in host and becomes operative under hypoxic condition. It is experimentally known that phosphorylated DevR controls the expression of several downstream genes in a complex manner. In the present work we propose a theoretical model to show role of binding sites in DevR mediated gene expression. Individual and collective role of binding sites in regulating DevR mediated gene expression has been shown via modeling. Objective of the present work is twofold. First, to describe qualitatively the temporal dynamics of wild type genes and their known mutants. Based on these results we propose that DevR controlled gene expression follows a specific pattern which is efficient in describing other DevR mediated gene expression. Second, to analyze behavior of the system from information theoretical point of view. Using the tools of information theory we have calculated molecular efficiency of the system and have shown that it is close to the maximum limit of isothermal efficiency.

14.
Artigo em Inglês | MEDLINE | ID: mdl-24125303

RESUMO

We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced signal transduction within the members of a bacterial two-component system. The proposed model takes into account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the model via Langevin equations, which are then solved within the framework of linear noise approximation. The resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics has been analyzed.


Assuntos
Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA