Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
2.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546892

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

3.
Nat Commun ; 14(1): 3059, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244916

RESUMO

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/uso terapêutico , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/metabolismo
4.
ChemMedChem ; 17(22): e202200393, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36129427

RESUMO

New antimalarial treatments with novel mechanism of action are needed to tackle Plasmodium falciparum infections that are resistant to first-line therapeutics. Here we report the exploration of MMV692140 (2) from the Pathogen Box, a collection of 400 compounds that was made available by Medicines for Malaria Venture (MMV) in 2015. Compound 2 was profiled in in vitro models of malaria and was found to be active against multiple life-cycle stages of Plasmodium parasites. The mode of resistance, and putatively its mode of action, was identified as Plasmodium falciparum translation elongation factor 2 (PfeEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA. The compound maintains activity against a series of drug-resistant parasite strains. The structural motif of the tetrahydroquinoline (2) was explored in a chemistry program with its structure-activity relationships examined, resulting in the identification of an analog with 30-fold improvement of antimalarial asexual blood stage potency.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
5.
Org Lett ; 6(11): 1741-3, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15151403

RESUMO

The indium-mediated allylation of chiral hydrazones was investigated. Essentially complete diastereoselectivity and quantitative yields were obtained for substrates derived from both aromatic and aliphatic aldehydes. [reaction--see text]

6.
Org Lett ; 5(26): 4947-9, 2003 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-14682736

RESUMO

Alkenyl chlorides and bromides are converted into tertiary enamides by treatment with a carbamoylsilane in toluene at 110 degrees C in the presence of phosphine-palladium(0) catalysts. [reaction: see text]

7.
Org Lett ; 4(24): 4357-9, 2002 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12443097

RESUMO

[reaction: see text] A carbamoylsilane is shown to carry out the direct carbamoylation of aryl chlorides, bromides, and iodides under catalysis by phosphinepalladium(0) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA