Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 12(1): 515, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017609

RESUMO

Since the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the "Criollo") horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the "gait-keeper" DMRT3 mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly available PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the "gait-keeper" DMRT3 allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant "gait-keeper" allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing the DMRT3 locus to this day. The lack of the detectable signature of selection associated with the DMRT3 in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (including CHRM5, CYP2E1, MYH7, SRSF1, PAM, PRN and others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.


Assuntos
Cavalos , Animais
2.
GigaByte ; 2022: gigabyte73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824507

RESUMO

The mitochondrial genome of the long-spined black sea urchin, Diadema antillarum, was sequenced using Illumina next-generation sequencing technology. The complete mitogenome is 15,708 bp in length, containing two rRNA, 22 tRNA and 13 protein-coding genes, plus a noncoding control region of 133 bp. The nucleotide composition is 18.37% G, 23.79% C, 26.84% A and 30.99% T. The A + T bias is 57.84%. Phylogenetic analysis based on 12 complete mitochondrial genomes of sea urchins, including four species of the family Diadematidae, supported familial monophyly; however, the two Diadema species, D. antillarum and D. setosum were not recovered as sister taxa.

3.
Genes (Basel) ; 12(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924228

RESUMO

Amazon parrots (Amazona spp.) colonized the islands of the Greater Antilles from the Central American mainland, but there has not been a consensus as to how and when this happened. Today, most of the five remaining island species are listed as endangered, threatened, or vulnerable as a consequence of human activity. We sequenced and annotated full mitochondrial genomes of all the extant Amazon parrot species from the Greater Antillean (A. leucocephala (Cuba), A. agilis, A. collaria (both from Jamaica), A. ventralis (Hispaniola), and A. vittata (Puerto Rico)), A. albifrons from mainland Central America, and A. rhodocorytha from the Atlantic Forest in Brazil. The assembled and annotated mitogenome maps provide information on sequence organization, variation, population diversity, and evolutionary history for the Caribbean species including the critically endangered A. vittata. Despite the larger number of available samples from the Puerto Rican Parrot Recovery Program, the sequence diversity of the A. vittata population in Puerto Rico was the lowest among all parrot species analyzed. Our data support the stepping-stone dispersal and speciation hypothesis that has started approximately 3.47 MYA when the ancestral population arrived from mainland Central America and led to diversification across the Greater Antilles, ultimately reaching the island of Puerto Rico 0.67 MYA. The results are presented and discussed in light of the geological history of the Caribbean and in the context of recent parrot evolution, island biogeography, and conservation. This analysis contributes to understating evolutionary history and empowers subsequent assessments of sequence variation and helps design future conservation efforts in the Caribbean.


Assuntos
Amazona/classificação , DNA Mitocondrial/genética , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Amazona/genética , Animais , Brasil , Cuba , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Jamaica , Anotação de Sequência Molecular , Filogenia , Porto Rico
4.
Int Urol Nephrol ; 51(11): 1893-1902, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31385177

RESUMO

Despite rapid advances in diagnostic and therapeutic medicine, renal cell carcinoma (RCC) continues to cause significant morbidity and mortality in patients. While there has been a shift towards earlier detection, approximately 16% of patients present with metastatic disease at the time of diagnosis. Kidney injury molecule-1 (KIM-1) is a glycoprotein that has been shown to be a robust and reliable biomarker of acute proximal tubular injury. As KIM-1 is mainly expressed in RCC derived from the proximal tubules, it is a reliable marker to differentiate between proximal tubular primary RCC and distal nephron primary RCC. Several studies have investigated urinary KIM-1 (uKIM-1) in RCC and demonstrated that it is a sensitive and specific marker for detecting localized RCC, as patients had markedly reduced uKIM-1 levels following nephrectomy, with uKIM-1 levels correlating with tumor size and grade. In addition, levels of KIM-1 present in plasma have also shown utility as a biomarker of RCC with levels being elevated in RCC cases at least 5 years before diagnosis. This review focuses on a progressive understanding of KIM-1 in the diagnosis of RCC using biopsies, urine, and plasma samples, and it will also provide some insight into potential roles of KIM-1 in the growth and spread of RCC.


Assuntos
Biomarcadores Tumorais/urina , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/urina , Receptor Celular 1 do Vírus da Hepatite A/análise , Neoplasias Renais/diagnóstico , Neoplasias Renais/urina , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/etiologia , Diagnóstico Diferencial , Receptor Celular 1 do Vírus da Hepatite A/sangue , Receptor Celular 1 do Vírus da Hepatite A/fisiologia , Humanos , Neoplasias Renais/sangue , Neoplasias Renais/etiologia
5.
Methods Cell Biol ; 150: 357-389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30777184

RESUMO

Sea urchin coelomocytes can be collected in large numbers from adult sea urchins of the species, Strongylocentrotus purpuratus, which typically has 12-40mL of coelomic fluid. Coelomocytes are used for analysis of immune reactions and immune gene expression in addition to basic functions of cells, in particular for understanding structure and modifications of the cytoskeleton in phagocytes. The methods described here include coelomocyte isolation, blocking the clotting reaction, establishing and maintaining primary cultures, separation of different types of coelomocytes into fractions, processing live coelomocytes for light microscopy, fixation and staining for light and electron microscopy, analysis of coelomocyte populations by flow cytometry, and sorting single cells for more detailed follow-up analyses including transcriptomics or genomic characteristics. These methods are provided to make working with coelomocytes accessible to researchers who are unfamiliar with these cells and perhaps to aid others who have worked extensively with invertebrate cells.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Leucócitos/citologia , Fagócitos/citologia , Ouriços-do-Mar/citologia , Manejo de Espécimes/métodos , Animais , Expressão Gênica/fisiologia , Genômica/métodos , Ouriços-do-Mar/genética , Transcriptoma/genética
6.
Genes (Basel) ; 10(1)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654561

RESUMO

Islands have been used as model systems for studies of speciation and extinction since Darwin published his observations about finches found on the Galapagos. Amazon parrots inhabiting the Greater Antillean Islands represent a fascinating model of species diversification. Unfortunately, many of these birds are threatened as a result of human activity and some, like the Puerto Rican parrot, are now critically endangered. In this study we used a combination of de novo and reference-assisted assembly methods, integrating it with information obtained from related genomes to perform genome reconstruction of three amazon species. First, we used whole genome sequencing data to generate a new de novo genome assembly for the Puerto Rican parrot (Amazona vittata). We then improved the obtained assembly using transcriptome data from Amazona ventralis and used the resulting sequences as a reference to assemble the genomes Hispaniolan (A. ventralis) and Cuban (Amazona leucocephala) parrots. Finally, we, annotated genes and repetitive elements, estimated genome sizes and current levels of heterozygosity, built models of demographic history and provided interpretation of our findings in the context of parrot evolution in the Caribbean.


Assuntos
Espécies em Perigo de Extinção , Genoma , Papagaios/genética , Animais , Ilhas , Papagaios/classificação , Transcriptoma
7.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718205

RESUMO

Solenodons are insectivores that live in Hispaniola and Cuba. They form an isolated branch in the tree of placental mammals that are highly divergent from other eulipothyplan insectivores The history, unique biology, and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data. However, a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus). Thus, we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string graph-based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of 5 individuals from the southern subspecies (S. p. woodi). In addition, we obtained an additional sequence from 1 sample of the northern subspecies (S. p. paradoxus). The resulting genome assemblies were compared to each other and annotated for genes, with an emphasis on venom genes, repeats, variable microsatellite loci, and other genomic variants. Phylogenetic positioning and selection signatures were inferred based on 4,416 single-copy orthologs from 10 other mammals. We estimated that solenodons diverged from other extant mammals 73.6 million years ago. Patterns of single-nucleotide polymorphism variation allowed us to infer population demography, which supported a subspecies split within the Hispaniolan solenodon at least 300 thousand years ago.


Assuntos
Evolução Biológica , Sequência Conservada/genética , Espécies em Perigo de Extinção , Ilhas , Mamíferos/genética , Análise de Sequência de DNA/métodos , Animais , Cuba , Genoma , Heterozigoto , Especificidade da Espécie
8.
J Immunol ; 193(11): 5678-88, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355922

RESUMO

Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates.


Assuntos
Loci Gênicos , Fagócitos/fisiologia , Vibrioses/imunologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Loci Gênicos/genética , Imunidade Inata/genética , Dados de Sequência Molecular , Fagócitos/microbiologia , Filogenia , Polimorfismo Genético , Ouriços-do-Mar , Homologia Estrutural de Proteína , Regulação para Cima
9.
PLoS One ; 8(4): e61419, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613847

RESUMO

Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the syncytia-like structures.


Assuntos
Lipopolissacarídeos/farmacologia , Fagócitos/citologia , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/efeitos dos fármacos , Animais , Agregação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Meios de Cultura/farmacologia , Células Gigantes/citologia , Células Gigantes/efeitos dos fármacos , Humanos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Fatores de Tempo
10.
Innate Immun ; 19(6): 569-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23405032

RESUMO

Purple sea urchins (Strongylocentrotus purpuratus) express a highly variable set of immune genes called Sp185/333 by two subtypes of coelomocytes: the polygonal and small phagocytes. We report that the Sp185/333 genes and their encoded proteins are also expressed in all of the major organs in the adult sea urchin, including the axial organ, pharynx, esophagus, intestine and gonads. After immune challenge, there is an increase in the level of Sp185/333 mRNA in cells associated with the intestine and axial organ. The Sp185/333 proteins increase in the axial organ, pharynx, esophagus and intestine after challenge. However, the proportion of Sp185/333-positive cells only increases in the axial organ, while there is no change in that proportion in the other organs after challenge. The size range of the major Sp185/333 proteins expressed by organs is broader (5 kDa to > 250 kDa) compared with those in coelomocytes (∼40 kDa to < 250 kDa). Images of the different organs do not clarify whether coelomocytes or parenchymal cells express the Sp185/333 proteins. The increase in levels of Sp185/333 transcripts, protein expression and Sp185/333-positive cells in the axial organ in response to challenge suggests that this organ may have an important role in immunity for this species.


Assuntos
Estruturas Animais/imunologia , Sistema Imunitário/fisiologia , Strongylocentrotus purpuratus/imunologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Variação Genética , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Transcriptoma
11.
Dev Comp Immunol ; 35(9): 959-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21182860

RESUMO

The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a wide variety of invertebrates. We review here penaeidins and crustins in crustaceans, the allorecognition system encoded by fuhc, fester and Uncle fester in a colonial tunicate, Dscam and PGRPs in arthropods, FREPs in snails, VCBPs in protochordates, and the Sp185/333 system in the purple sea urchin. Comparisons among immune systems, including those reviewed here have not identified an immune specific regulatory "genetic toolkit", however, repeatedly identified sequences (or "building materials" on which the tools act) are present in a broad range of immune systems. These include a Toll/TLR system, a primitive complement system, an LPS binding protein, and a RAG core/Transib element. Repeatedly identified domains and motifs that function in immune proteins include NACHT, LRR, Ig, death, TIR, lectin domains, and a thioester motif. In addition, there are repeatedly identified mechanisms (or "construction methods") that generate sequence diversity in genes with immune function. These include genomic instability, duplications and/or deletions of sequences and the generation of clusters of similar genes or exons that appear as families, gene recombination, gene conversion, retrotransposition, alternative splicing, multiple alleles for single copy genes, and RNA editing. These commonly employed "materials and methods" for building and maintaining an effective immune system that might have been part of that ancestral system appear now as a fragmented and likely incomplete set, likely due to the rapid evolutionary change (or loss) of host genes that are under pressure to keep pace with pathogen diversity.


Assuntos
Sistema Imunitário/imunologia , Imunoglobulinas/imunologia , Isoantígenos/imunologia , Motivos de Aminoácidos/genética , Animais , Diversidade de Anticorpos/genética , Evolução Biológica , Proteínas do Sistema Complemento/imunologia , Instabilidade Genômica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulinas/genética , Invertebrados , Fisiologia Comparada , Receptores Toll-Like/imunologia
12.
Dev Comp Immunol ; 34(8): 884-95, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20363251

RESUMO

A full length cDNA sequence expressed in coelomocytes shows significant sequence match to vertebrate Tie1 and Tie2/TEK. Vertebrate Tie2/TEK is the receptor for the angiopoietins and plays an important role in angiogenesis and hematopoiesis, whereas Tie1 regulates the activity of Tie2. The deduced sequence of the SpTie1/2 protein has a similar order and organization of domains to the homologous vertebrate proteins including a highly conserved receptor tyrosine kinase domain in the cytoplasmic tail. The N terminus of the ectodomain has one immunoglobulin (Ig)-Tie2_1 domain, followed by an Ig domain, four epidermal growth factor domains, a second Ig domain, and three fibronectin type III domains. The SpTie1/2 gene is expressed in coelomocytes and the axial organ, whereas other organs do not show significant expression. The timing of embryonic expression corresponds with the differentiation of blastocoelar cells, the embryonic and larval immune cells. Searches of the sea urchin genome show several gene models encoding putative ligands and signaling proteins that might interact with SpTie1/2. We speculate that SpTie1/2 may be involved in the proliferation of sea urchin immune cells in both adults and embryos.


Assuntos
Sistema Imunitário/imunologia , Estrutura Terciária de Proteína/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Strongylocentrotus purpuratus , Animais , Células Cultivadas , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Sistema Imunitário/embriologia , Sistema Imunitário/patologia , Imunidade Inata , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Filogenia , Receptores Proteína Tirosina Quinases/imunologia , Receptor de TIE-1/genética , Receptor TIE-2/genética , Homologia de Sequência de Aminoácidos
13.
Adv Exp Med Biol ; 708: 260-301, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21528703

RESUMO

A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.


Assuntos
Ouriços-do-Mar/imunologia , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Sistema Imunitário/imunologia , Lectinas/genética , Lectinas/imunologia , Ouriços-do-Mar/genética
14.
Dev Comp Immunol ; 34(3): 235-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19887082

RESUMO

The Sp185/333 system of genes, messages and proteins are expressed in the coelomocytes of the purple sea urchin, Strongylocentrotus purpuratus, and is an extraordinary example of diversification of a putative innate immune response system in an invertebrate. Reviewed here, is the current understanding of this complex system as illustrated by sequence comparisons of the genes, messages and deduced proteins with descriptions of diversity, including preliminary results on genomic organization and descriptions of 185/333 in other echinoids. Sp185/333 gene expression in adults and embryos occurs in response to immune challenge and includes changes in the frequencies of Sp185/333-positive coelomocytes in the adults. The diversity of the Sp185/333 protein repertoire in coelomocytes is far greater than the sequence diversity encoded in the genes, which may be the result of rapid gene recombination, RNA editing and/or low-fidelity transcription, plus post-translational modifications. This review concludes with preliminary results and speculations on protein function.


Assuntos
Sistema Imunitário/fisiologia , Proteínas/genética , Proteínas/imunologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Expressão Gênica , Dados de Sequência Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos
15.
J Cell Sci ; 121(Pt 3): 339-48, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18198192

RESUMO

The current paradigm proposes that the innate immune systems of invertebrates are much more complex than previously thought. The highly diverse 185/333 gene family in the purple sea urchin encodes a family of closely related proteins of varying length and sequence composition. Subsets of small phagocytes and polygonal cells express 185/333 proteins with localization on the surface of the small phagocytes and within perinuclear vesicles in both cell types. In short-term cultures, coelomocytes form small aggregates that progress to syncytia that are thought to be equivalent to encapsulation in vivo. These aggregates were found to be enriched for 185/333-positive (185/333(+)) small phagocytes. In response to lipopolysaccharide challenge, coelomocytes transiently increased, including frequencies of both 185/333(+) and 185/333-negative (185/333(-)) small phagocytes and 185/333(+) polygonal cells. The 185/333 proteins were present in a broad array of sizes, most of which were larger than that predicted from the cDNAs. Recombinant 185/333 proteins expressed in bacteria and insect cells were also larger than expected, suggesting that the proteins dimerize and multimerize. The diversity of the 185/333 proteins, their expression in response to immune challenge, and their cellular localization suggests this protein family and the small phagocytes have an important immunological role in the sea urchin.


Assuntos
Proteínas/metabolismo , Strongylocentrotus purpuratus/metabolismo , Animais , Dimerização , Escherichia coli/genética , Expressão Gênica , Imunidade Inata , Lipopolissacarídeos/farmacologia , Microscopia Confocal , Peso Molecular , Família Multigênica , Fagócitos/imunologia , Fagócitos/metabolismo , Estrutura Quaternária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
16.
Environ Mol Mutagen ; 49(3): 173-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18213652

RESUMO

To address the need for improved approaches to study mutations transmitted to progeny from mutagen-exposed parents, we evaluated lambda transgenic medaka, a small fish that carries the cII mutation target gene, as a new model for germ cell mutagenesis. Mutations in the cII gene in progeny derived from ethyl-nitrosourea (ENU)-exposed males were readily detected. Frequencies of mutant offspring, proportions of mosaic or whole body mutant offspring, and mutational spectra differed according to germ cell stage exposed to ENU. Postmeiotic germ cells (spermatozoa/late spermatids) generated a higher frequency of mutant offspring (11%) compared to premeiotic germ cells (3.5%). Individuals with cII mutant frequencies (MF) elevated more than threefold above the spontaneous MF (3 x 10(-5)) in the range of 10(-4) to 10(-3) were mosaic mutant offspring, whereas those with MFs approaching 1 x 10(-2) were whole body mutant offspring. Mosaic mutant offspring comprised the majority of mutant offspring derived from postmeiotic germ cells, and unexpectedly, from spermatogonial stem cells. Mutational spectra comprised of two different mutations, but at identical sites were unusual and characteristic of delayed mutations, in which fixation of a second mutation was delayed following fertilization. Delayed mutations and prevalence of mosaic mutant offspring add to growing evidence that implicates germ cells in mediating processes postfertilization that contribute to genomic instability in progeny. This model provides an efficient and sensitive approach to assess germ cell mutations, expands opportunities to increase understanding of fundamental mechanisms of mutagenesis, and provides a means for improved assessment of potential genetic health risks.


Assuntos
Etilnitrosoureia/toxicidade , Células Germinativas/efeitos dos fármacos , Modelos Animais , Mutagênese , Mutagênicos/toxicidade , Oryzias/genética , Fatores de Transcrição/genética , Proteínas Virais/genética , Animais , Animais Geneticamente Modificados , Masculino
17.
J Virol ; 81(2): 441-5, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17079285

RESUMO

Recovery from acute hepatitis B virus (HBV) infection requires a broad, vigorous T-cell response, which is enhanced in mice when chemokine receptor 5 (CCR5) is missing. To test the hypothesis that production of a nonfunctional CCR5 (CCR5Delta32 [a functionally null allele containing a 32-bp deletion]) increases the likelihood of recovery from hepatitis B in humans, we studied 526 persons from three cohorts in which one person with HBV persistence was matched to two persons who recovered from an HBV infection. Recovery or persistence was determined prior to availability of lamivudine. We determined genotypes for CCR5Delta32 and for polymorphisms in the CCR5 promoter and in coding regions of the neighboring genes, chemokine receptor 2 (CCR2) and chemokine receptor-like 2 (CCRL2). Allele and haplotype frequencies were compared among the 190 persons with viral recovery and the 336 with persistence by use of conditional logistic regression. CCR5Delta32 reduced the risk of developing a persistent HBV infection by nearly half (odds ratio [OR], 0.53; 95% confidence interval [CI], 0.33 to 0.83; P = 0.006). This association was virtually identical in persons with and without a concomitant human immunodeficiency virus infection. Of the nine individuals who were homozygous for the deletion, eight recovered from infection (OR, 0.25; 95% CI, 0.03 to 1.99; P = 0.19). None of the other neighboring polymorphisms examined were associated with HBV outcome. These data demonstrate a protective effect of CCR5Delta32 in recovery from an HBV infection, provide genetic epidemiological evidence for a role of CCR5 in the immune response to HBV, and suggest a potential therapeutic treatment for patients persistently infected with HBV.


Assuntos
Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , Receptores CCR5/genética , Receptores CCR5/fisiologia , Adulto , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Hepatite B Crônica/virologia , Humanos , Masculino , Polimorfismo Genético , Receptores CCR5/deficiência
18.
Dev Biol ; 300(1): 349-65, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17027739

RESUMO

Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.


Assuntos
Genoma , Imunidade/genética , Ouriços-do-Mar/genética , Ouriços-do-Mar/imunologia , Animais , Proteínas do Sistema Complemento/genética , Citocinas/genética , Filogenia , Receptores Depuradores/genética , Ouriços-do-Mar/classificação , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Vertebrados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA