Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 270: 116377, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581731

RESUMO

Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.


Assuntos
Necroptose , Neoplasias , Humanos , Quinoxalinas/farmacologia , Apoptose , Células HT29 , DNA/farmacologia , Necrose/induzido quimicamente , Proteínas Quinases/metabolismo
2.
J Nat Prod ; 86(7): 1667-1676, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37285507

RESUMO

Norcryptotackieine (1a) belongs to the indoloquinoline class of alkaloids isolated from Cryptolepis sanguinolenta, a plant species that has been traditionally used as an antimalarial agent. Additional structural modifications of 1a can potentially enhance its therapeutic potency. Indoloquinolines such as cryptolepine, neocryptolepine, isocryptolepine, and neoisocryptolepine show restricted clinical applications owing to their cytotoxicity deriving from interactions with DNA. Here, we examined the effect of substitutions at the N-6 position of norcryptotackieine on the cytotoxicity, as well as structure-activity relationship studies pertaining to sequence specific DNA-binding affinities. The representative compound 6d binds DNA in a nonintercalative/pseudointercalative fashion, in addition to nonspecific stacking on DNA, in a sequence selective manner. The DNA-binding studies clearly establish the mechanism of DNA binding by N-6-substituted norcryptotackieines and neocryptolepine. The synthesized norcryptotackieines 6c,d and known indoloquinolines were screened on different cell lines (HEK293, OVCAR3, SKOV3, B16F10, and HeLa) to assess their cytotoxicity. Norcryptotackieine 6d (IC50 value of 3.1 µM) showed 2-fold less potency when compared to the natural indoloquinoline cryptolepine 1c (IC50 value of 1.64 µM) in OVCAR3 (ovarian adenocarcinoma) cell lines.


Assuntos
Alcaloides , Neoplasias Ovarianas , Quinolinas , Humanos , Feminino , Apoptose , Células HEK293 , Linhagem Celular Tumoral , Alcaloides Indólicos/farmacologia , Alcaloides/química , DNA/química , Quinolinas/farmacologia , Quinolinas/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122955, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301032

RESUMO

Herein we report an easy, rapid and cost-effective method for spectroscopic sensing of a prostate cancer biomarker prostate specific antigen (PSA) using a novel nanocomposite. The material is a synthetic quinoxaline derivative-based iron nanocomposite fabricated on graphene nanoplatelet surface (1d-Fe-Gr). Presence of graphene enhanced the efficacy of synthesized 1d-Fe-Gr to sense PSA in serum medium with an impressive limit of detection (LOD) value of 0.878 pg/mL compared to 1d-Fe alone (LOD 17.619 pg/mL) using UV-visible absorption spectroscopy. LOD of PSA by 1d-Fe-Gr using Raman spectroscopy is even more impressive (0.410 pg/mL). Moreover, presence of interfering biomolecules like glucose, cholesterol, bilirubin and insulin in serum improves the detection threshold significantly in presence of 1d-Fe-Gr which otherwise cause LOD values of PSA to elevate in control sets. In presence of these biomolecules, the LOD values improve significantly as compared to healthy conditions in the range 0.623-3.499 pg/mL. Thus, this proposed detection method could also be applied efficiently to the patients suffering from different pathophysiological disorders. These biomolecules may also be added externally during analyses to improve the sensing ability. Fluorescence, Raman and circular dichroism spectroscopy were used to study the underlying mechanism of PSA sensing by 1d-Fe-Gr. Molecular docking studies confirm the selective interaction of 1d-Fe-Gr with PSA over other cancer biomarkers.


Assuntos
Grafite , Nanocompostos , Masculino , Humanos , Antígeno Prostático Específico , Ferro , Grafite/química , Simulação de Acoplamento Molecular , Biomarcadores Tumorais , Nanocompostos/química
4.
J Org Chem ; 87(21): 14695-14705, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223596

RESUMO

Norcryptotackieine or 6H-indolo[2,3-b]quinoline is an indoloquinoline class of alkaloid isolated from Cryptolepis sanguinolenta that is traditionally used for antimalarial therapy. Additional structural tuning can extend the therapeutic potency of these indoloquinolines as antileishmanial drug leads. Synthesis of N-6-functionalized norcryptotackieines suffers from the necessity of complex pre-synthesized starting materials, restricted scope of functionalization, or tedious processes. Consequently, a straightforward synthetic procedure for accessing non-natural N-6-functionalized 6H-indolo[2,3-b]quinolines with potent antileishmanial activities is highly sought-after. Herein, we report a two-step one-pot synthesis of N-6-functionalized norcryptotackieine through a Pd-catalyzed double annulation reaction of commercially available amphipathic amines, 2-iodobenzyl cyanide, and differently functionalized 2-bromobenzaldehydes. The reported procedure allows a broad flexibility of substitution at the N-6 position and access to diversified scaffolds, including two natural products norcryptotackieine and neocryptolepine. Interestingly, 6d showed potent antileishmanial activities by causing disruption in the cytoskeletal structure and apoptotic-mediated death of parasites. Together, our work manifests the shortest route to N-6-substituted norcryptotackieine-derived antileishmanial agents.


Assuntos
Alcaloides , Antimaláricos , Antineoplásicos , Antiprotozoários , Quinolinas , Quinolinas/química , Alcaloides/química , Antiprotozoários/farmacologia
5.
Chem Commun (Camb) ; 55(93): 14027-14030, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690898

RESUMO

RNA-biased small molecules with a monoquinoxaline core target the L-shaped structure of subdomain IIa of Hepatitis C virus internal ribosome entry site (IRES) RNA in proximity to the Mg2+ binding site. The binding event leads to the destacking of RNA bases, resulting in the inhibition of IRES-mediated translation and HCV RNA replication.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Sítios Internos de Entrada Ribossomal/efeitos dos fármacos , Quinoxalinas/farmacologia , RNA Viral/efeitos dos fármacos , Antivirais/química , Hepacivirus/genética , Humanos , Sítios Internos de Entrada Ribossomal/genética , Conformação Molecular , Quinoxalinas/química , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA