Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Lancet Neurol ; 23(5): 534-544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631769

RESUMO

Progressive multifocal leukoencephalopathy is a rare but devastating demyelinating disease caused by the JC virus (JCV), for which no therapeutics are approved. To make progress towards addressing this unmet medical need, innovations in clinical trial design are needed. Quantitative JCV DNA in CSF has the potential to serve as a valuable biomarker of progressive multifocal leukoencephalopathy disease and treatment response in clinical trials to expedite therapeutic development, as do neuroimaging and other fluid biomarkers such as neurofilament light chain. Specifically, JCV DNA in CSF could be used in clinical trials as an entry criterion, stratification factor, or predictor of clinical outcomes. Insights from the investigation of candidate biomarkers for progressive multifocal leukoencephalopathy might inform approaches to biomarker development for other rare diseases.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Biomarcadores , Variações do Número de Cópias de DNA , DNA Viral/genética , Ensaios Clínicos como Assunto
2.
Ther Adv Hematol ; 14: 20406207231201721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822572

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by reactivation of the human polyomavirus 2 (HPyV-2). PML is associated with a high morbidity and mortality rate and there is currently no standard curative therapy. We report short-term immunologic response and long-term clinical outcomes in a patient diagnosed with follicular lymphoma (FL) who developed PML. Diagnosis of PML was established conclusively based on findings from a brain biopsy. The patient was treated with recombinant interleukin 2 (IL-2) and showed rapid clinical improvement. HPyV-2-specific T-cells were tracked longitudinally and correlation with clinical status, viral load, and radiographic imaging was documented. After the progression of the patient's FL, which required an allogeneic bone marrow transplant, the patient prophylactically received human leukocyte antigen-matched donor-derived HPyV-2 T-cells to prevent the recurrence of the PML as part of a clinical trial. Twelve years after the initial diagnosis of PML, he did not develop a relapse of his PML, supporting data that therapies that increase HPyV-2-specific T-cells, including IL-2, may be effective in the management of PML.

3.
J Neurovirol ; 28(1): 17-26, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35239145

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a frequent neurological complication in immunosuppressed patients. PML is caused by the JC virus (JCV), a neurotropic DNA polyomavirus that infects oligodendrocytes and astrocytes, causing inflammation and demyelination which lead to neurological dysfunction. The pathogenesis of PML is poorly understood due to the lack of in vitro or animal models to study mechanisms of disease as the virus most efficiently infects only human cells. We developed a human-derived brain organotypic system (also called brain organoid) to model JCV infection. The model was developed by using human-induced pluripotent stem cells (iPSC) and culturing them in 3D to generate an organotypic model containing neurons, astrocytes, and oligodendrocytes which recapitulates aspects of the environment of the human brain. We infected the brain organoids with the JCV MAD4 strain or cerebrospinal fluid of a patient with PML. The organoids were assessed for evidence of infection by qPCR, immunofluorescence, and electron microscopy at 1, 2, and 3 weeks post-exposure. JCV infection in both JCV MAD4 strain and PML CSF-exposed brain organoids was confirmed by immunocytochemical studies demonstrating viral antigens and electron microscopy showing virion particles in the nuclear compartment of oligodendrocytes and astrocytes. No evidence of neuronal infection was visualized. Infection was also demonstrated by JCV qPCR in the virus-exposed organoids and their media. In conclusion, the brain organoid model of JCV infection establishes a human model suitable for studying the mechanisms of JCV infection and pathogenesis of PML and may facilitate the exploration of therapeutic approaches.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Infecções por Polyomavirus , Animais , Encéfalo , DNA Viral/genética , Humanos , Vírus JC/genética , Organoides/patologia , Infecções por Polyomavirus/genética
4.
Front Neurol ; 13: 1016377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588876

RESUMO

Background: Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods: We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results: The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion: For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.

5.
Lancet Neurol ; 20(8): 639-652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302788

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS: We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS: Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION: We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING: Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.


Assuntos
Vírus BK/imunologia , Imunoterapia/métodos , Leucoencefalopatia Multifocal Progressiva/terapia , Linfócitos T/imunologia , Adulto , Idoso , Doadores de Sangue , Estudos de Coortes , Determinação de Ponto Final , Estudos de Viabilidade , Feminino , Humanos , Imunoterapia/efeitos adversos , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Projetos Piloto , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
6.
Stem Cell Res Ther ; 12(1): 236, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849659

RESUMO

Erythro-myeloid progenitors (EMP) are found in a population of cells expressing CD31 and CD45 markers (CD31+CD45+). A recent study indicated that EMPs persist until adulthood and can be a source of endothelial cells. We identified two sub-populations of EMP cells, CD31lowCD45low and CD31highCD45+, from peripheral blood that can differentiate into cells of erythroid lineage. Our novel findings add to the current knowledge of hematopoietic lineage commitment, and our sequential, dual-step, in vitro culture model provides a platform for the study of the molecular and cellular mechanisms underlying human hematopoiesis and erythroid differentiation.


Assuntos
Células Endoteliais , Sistema Hematopoético , Adulto , Diferenciação Celular , Células Eritroides , Hematopoese , Humanos
9.
Glia ; 69(1): 216-229, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882086

RESUMO

Inflammatory demyelination and axonal injury in the central nervous system (CNS) are cardinal features of progressive multiple sclerosis (MS), and linked to activated brain macrophage-like cells (BMCs) including resident microglia and trafficking macrophages. Caspase-1 is a pivotal mediator of inflammation and cell death in the CNS. We investigated the effects of caspase-1 activation and its regulation in models of MS. Brains from progressive MS and non-MS patients, as well as cultured human oligodendrocytes were examined by transcriptomic and morphological methods. Next generation transcriptional sequencing of progressive MS compared to non-MS patients' normal appearing white matter (NAWM) showed induction of caspase-1 as well as other inflammasome-associated genes with concurrent suppression of neuron-specific genes. Oligodendrocytes exposed to TNFα exhibited upregulation of caspase-1 with myelin gene suppression in a cell differentiation state-dependent manner. Brains from cuprizone-exposed mice treated by intranasal delivery of the caspase-1 inhibitor, VX-765 or its vehicle, were investigated in morphological and molecular studies, as well as by fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging. Cuprizone exposure resulted in BMC and caspase-1 activation accompanied by demyelination and axonal injury, which was abrogated by intranasal VX-765 treatment. FDG-PET imaging revealed suppressed glucose metabolism in the thalamus, hippocampus and cortex of cuprizone-exposed mice that was restored with VX-765 treatment. These studies highlight the caspase-1 dependent interactions between inflammation, demyelination, and glucose metabolism in progressive MS and associated models. Intranasal delivery of an anti-caspase-1 therapy represents a promising therapeutic approach for progressive MS and other neuro-inflammatory diseases.


Assuntos
Esclerose Múltipla Crônica Progressiva , Animais , Caspase 1 , Cuprizona/toxicidade , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Glucose , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina
10.
AIDS ; 34(7): 963-978, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379159

RESUMO

OBJECTIVE: Astrocytes are proposed to be a critical reservoir of HIV in the brain. However, HIV infection of astrocytes is inefficient in vitro except for cell-to-cell transmission from HIV-infected cells. Here, we explore mechanisms by which cell-free HIV bypasses entry and postentry barriers leading to a productive infection. METHODS: HIV infection of astrocytes was investigated by a variety of techniques including transfection of CD4-expressing plasmid, treatment with lysosomotropic agents or using a transwell culture system loaded with HIV-infected lymphocytes. Infection was monitored by HIV-1 p24 in culture supernatants and integrated proviral DNA was quantified by Alu-PCR. RESULTS: Persistent HIV infection could be established in astrocytes by transfection of proviral DNA, transduction with VSV-G-pseudotyped viruses, transient expression of CD4 followed by HIV infection, or simultaneous treatment with lysosomotropic chloroquine or Tat-HA2 peptide with HIV infection. In absence of these treatments, HIV entered via endocytosis as seen by electronmicroscopy and underwent lysosomal degradation without proviral integration, indicating endocytosis is a dead end for HIV in astrocytes. Nevertheless, productive infection was observed when astrocytes were in close proximity but physically separated from HIV-infected lymphocytes in the transwell cultures. This occurred with X4 or dual tropic R5X4 viruses and was blocked by an antibody or antagonist to CXCR4. CONCLUSION: A CD4-independent, CXCR4-dependent mechanism of viral entry is proposed, by which immature HIV particles from infected lymphocytes might directly bind to CXCR4 on astrocytes and trigger virus--cell fusion during or after the process of viral maturation. This mechanism may contribute to the formation of brain HIV reservoirs.


Assuntos
Astrócitos/virologia , Endocitose , Infecções por HIV/virologia , HIV-1/fisiologia , Receptores CXCR4/metabolismo , Internalização do Vírus , Proteína do Núcleo p24 do HIV , HIV-1/genética , HIV-1/patogenicidade , Humanos
11.
Front Neurol ; 11: 186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256442

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by reactivation of the JC virus (JCV), a polyomavirus that infects at least 60% of the population but is asymptomatic or results in benign symptoms in most people. PML occurs as a secondary disease in a variety of disorders or as a serious adverse event from immunosuppressant agents, but is mainly found in three groups: HIV-infected patients, patients with hematological malignancies, or multiple sclerosis (MS) patients on the immunosuppressant therapy natalizumab. It is severely debilitating and is deadly in ~50% HIV cases, ~90% of hematological malignancy cases, and ~24% of MS-natalizumab cases. A PML risk prediction test would have clinical utility in all at risk patient groups but would be particularly beneficial in patients considering therapy with immunosuppressant agents known to cause PML, such as natalizumab, rituximab, and others. While a JC antibody test is currently used in the clinical decision process for natalizumab, it is suboptimal because of its low specificity and requirement to periodically retest patients for seroconversion or to assess if a patient's JCV index has increased. Whereas a high specificity genetic risk prediction test comprising host genetic risk variants (i.e., germline variants occurring at higher frequency in PML patients compared to the general population) could be administered one time to provide clinicians with additional risk prediction information that is independent of JCV serostatus. Prior PML case reports support the hypothesis that PML risk is greater in patients with a genetically caused immunodeficiency disorder. To identify germline PML risk variants, we performed exome sequencing on 185 PML cases (70 in a discovery cohort and 115 in a replication cohort) and used the gnomAD variant database for interpretation. Our study yielded 19 rare variants (maximum allele frequency of 0.02 in gnomAD ethnically matched populations) that impact 17 immune function genes (10 are known to cause inborn errors of immunity). Modeling of these variants in a PML genetic risk test for MS patients considering natalizumab treatment indicates that at least a quarter of PML cases may be preventable.

13.
N Engl J Med ; 380(17): 1597-1605, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30969503

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection that is caused by the JC virus and is typically fatal unless immune function can be restored. Programmed cell death protein 1 (PD-1) is a negative regulator of the immune response that may contribute to impaired viral clearance. Whether PD-1 blockade with pembrolizumab could reinvigorate anti-JC virus immune activity in patients with PML was unknown. METHODS: We administered pembrolizumab at a dose of 2 mg per kilogram of body weight every 4 to 6 weeks to eight adults with PML, each with a different underlying predisposing condition. Each patient received at least one dose but no more than three doses. RESULTS: Pembrolizumab induced down-regulation of PD-1 expression on lymphocytes in peripheral blood and in cerebrospinal fluid (CSF) in all eight patients. Five patients had clinical improvement or stabilization of PML accompanied by a reduction in the JC viral load in the CSF and an increase in in vitro CD4+ and CD8+ anti-JC virus activity. In the other three patients, no meaningful change was observed in the viral load or in the magnitude of antiviral cellular immune response, and there was no clinical improvement. CONCLUSIONS: Our findings are consistent with the hypothesis that in some patients with PML, pembrolizumab reduces JC viral load and increases CD4+ and CD8+ activity against the JC virus; clinical improvement or stabilization occurred in five of the eight patients who received pembrolizumab. Further study of immune checkpoint inhibitors in the treatment of PML is warranted. (Funded by the National Institutes of Health.).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fatores Imunológicos/uso terapêutico , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Líquido Cefalorraquidiano/virologia , Regulação para Baixo , Feminino , Humanos , Síndrome Inflamatória da Reconstituição Imune/etiologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/imunologia , Contagem de Linfócitos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Carga Viral , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
14.
Glia ; 66(11): 2503-2513, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500113

RESUMO

Neuroinflammatory diseases such as multiple sclerosis are characterized by infiltration of lymphocytes into the central nervous system followed by demyelination and axonal degeneration. While evidence suggests that activated T lymphocytes induce neurotoxicity and impair function of neural stem cells, the effect of T cells on oligodendrocyte progenitor cells (OPCs) is still uncertain, partly due to the difficulty in obtaining human OPCs. Here we studied the effect of activated T cells on OPCs using OPCs derived from human hematopoietic stem cells or from human fetal brain. OPCs were exposed to supernatants (sups) from activated T cells. Cell proliferation was determined by EdU incorporation and CellQuanti-Blue assays. Surprisingly, we found that sups from activated T cells induced OPC proliferation by regulating cell cycle progression. Vascular endothelial growth factor A (VEGF-A) transcripts were increased in T cells after activation. Immunodepletion of VEGF-A from activated T cell sups significantly attenuated its effect on OPC proliferation. Furthermore, VEGF receptor 2 (VEGFR2) was expressed on OPCs and its inhibition also attenuated activated T cell-induced OPC proliferation. Thus, activated T cells have a trophic role by promoting OPC proliferation via the VEGFR2 pathway.


Assuntos
Proliferação de Células/fisiologia , Citocinas/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/citologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feto/anatomia & histologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
15.
Proc Natl Acad Sci U S A ; 115(26): E6065-E6074, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29895691

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS of unknown cause that remains incurable. Inflammasome-associated caspases mediate the maturation and release of the proinflammatory cytokines IL-1ß and IL-18 and activate the pore-forming protein gasdermin D (GSDMD). Inflammatory programmed cell death, pyroptosis, was recently shown to be mediated by GSDMD. Here, we report molecular evidence for GSDMD-mediated inflammasome activation and pyroptosis in both myeloid cells (macrophages/microglia) and, unexpectedly, in myelin-forming oligodendrocytes (ODCs) in the CNS of patients with MS and in the MS animal model, experimental autoimmune encephalomyelitis (EAE). We observed inflammasome activation and pyroptosis in human microglia and ODCs in vitro after exposure to inflammatory stimuli and demonstrate caspase-1 inhibition by the small-molecule inhibitor VX-765 in both cell types. GSDMD inhibition by siRNA transduction suppressed pyroptosis in human microglia. VX-765 treatment of EAE animals reduced the expression of inflammasome- and pyroptosis-associated proteins in the CNS, prevented axonal injury, and improved neurobehavioral performance. Thus, GSDMD-mediated pyroptosis in select glia cells is a previously unrecognized mechanism of inflammatory demyelination and represents a unique therapeutic opportunity for mitigating the disease process in MS and other CNS inflammatory diseases.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Modelos Biológicos , Esclerose Múltipla/enzimologia , Oligodendroglia/enzimologia , Piroptose/efeitos dos fármacos , para-Aminobenzoatos/farmacologia , Células Cultivadas , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/patologia
16.
Lancet Neurol ; 17(5): 467-480, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656742

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare, devastating demyelinating disease of the CNS caused by the JC virus (JCV) that occurs in patients with compromised immune systems. Detection of PML in systemically immunocompetent patients with multiple sclerosis treated with natalizumab points to a role for this drug in the pathophysiology of PML. Emerging knowledge of the cellular and molecular biology of JCV infection and the pathogenesis of PML-including interplay of this common virus with the human immune system and features of natalizumab that might contribute to PML pathogenesis-provides new opportunities to monitor viral status and predict risk of JCV-associated disease. In the absence of an effective treatment for PML, early detection of the disease in patients with multiple sclerosis who are receiving natalizumab or other immunomodulatory treatments is vital to minimize CNS injury and avoid severe disability. Frequent MRI, stratified along a clinical and virus-specific immune risk profile, can be used to detect presymptomatic PML. Improved approaches to PML risk stratification are needed to guide treatment choices and surveillance of patients with multiple sclerosis.


Assuntos
Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla/tratamento farmacológico , Natalizumab/efeitos adversos , Humanos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Leucoencefalopatia Multifocal Progressiva/virologia
18.
J Neurovirol ; 23(1): 141-146, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27421731

RESUMO

JC virus (JCV) is a human polyomavirus that infects the central nervous system (CNS) of immunocompromised patients. JCV granule cell neuronopathy (JCV-GCN) is caused by infection of cerebellar granule cells, causing ataxia. A 77-year-old man with iatrogenic lymphopenia presented with severe ataxia and was diagnosed with JCV-GCN. His ataxia and cerebrospinal fluid (CSF) improved with intravenous immunoglobulin, high-dose intravenous methylprednisolone, mirtazapine, and mefloquine. Interleukin-7 (IL-7) therapy reconstituted his lymphocytes and reduced his CSF JCV load. One month after IL-7 therapy, he developed worsening ataxia and CSF inflammation, which raised suspicion for immune reconstitution inflammatory syndrome. Steroids were restarted and his ataxia stabilized.


Assuntos
Ataxia/tratamento farmacológico , Síndrome do Hamartoma Múltiplo/tratamento farmacológico , Hospedeiro Imunocomprometido , Interleucina-7/uso terapêutico , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Linfopenia/tratamento farmacológico , Malformações do Desenvolvimento Cortical do Grupo I/tratamento farmacológico , Idoso , Ataxia/diagnóstico , Ataxia/imunologia , Ataxia/virologia , Doença Crônica , Síndrome do Hamartoma Múltiplo/diagnóstico , Síndrome do Hamartoma Múltiplo/imunologia , Síndrome do Hamartoma Múltiplo/virologia , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Vírus JC/imunologia , Vírus JC/patogenicidade , Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/imunologia , Leucoencefalopatia Multifocal Progressiva/virologia , Linfopenia/diagnóstico , Linfopenia/imunologia , Linfopenia/virologia , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico , Malformações do Desenvolvimento Cortical do Grupo I/imunologia , Malformações do Desenvolvimento Cortical do Grupo I/virologia , Mefloquina/uso terapêutico , Metilprednisolona/uso terapêutico , Mianserina/análogos & derivados , Mianserina/uso terapêutico , Mirtazapina , Proteínas Recombinantes/uso terapêutico
20.
Mult Scler ; 23(7): 934-936, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27679459

RESUMO

The interplay between each of the stakeholder's responsibilities and desires clearly has resulted in continued widespread use of natalizumab with substantial risks and an ongoing quest for better risk mitigation. In the United States, regulatory actions codified the process of risk acceptance-and risk transfer-by escalating monitoring and information transfer to physicians and patients. Management of medication-related risks is a core function of regulatory agencies such as the Food and Drug Administration (FDA), European Medicines Agency (EMA), and the medical community. The interaction among stakeholders in medicine, pharma, regulatory bodies, physicians, and patients, sometimes has changed without overt review and discussion. Such is the case for natalizumab, an important and widely used disease-modifying therapy for multiple sclerosis. A rather silent but very considerable shift, effectively transferring increased risk for progressive multifocal leukoencephalopathy (PML) to the physicians and patients, has occurred in the past decade. We believe this changed risk should be clearly recognized and considered by all the stakeholders.


Assuntos
Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Natalizumab/efeitos adversos , Tomada de Decisão Clínica , Humanos , Comunicação Interdisciplinar , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Segurança do Paciente , Medição de Risco , Fatores de Risco , Participação dos Interessados , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA