RESUMO
This paper discusses an innovative APS hollow block wall with a frame made of concrete modified with recycled materials. The technical data of the hollow block, the percentages of the recycled materials, including SBR rubber granules and PET flakes in the modified concrete, and the composition of the concrete modified with this mixture of recycled additives, are presented. To demonstrate the effectiveness of the solution in reducing mechanical vibrations, the effect of the interaction of different frequencies of the mechanical wave on reducing these vibrations was evaluated for APS blocks and Alpha comparison blocks. The test was carried out on a developed test stand dedicated to dynamic measurements for sixteen frequencies in the range from 8 to 5000 Hz, forcing a sinusoidal course of vibrations. The results are presented graphically and show that the new type of APS hollow block wall was much more effective in reducing mechanical vibrations. This efficiency was in the range from 10 to 51% for 12 out of the tested 16 frequencies. For the frequencies of 8, 16, 128, and 2000 Hz, the values were obtained with a difference of 3.58% in favor of the APS hollow block. In addition, the study of the damping effectiveness of the APS hollow blocks, in relation to the vibrations generated by an M-400 impact mill, showed that the APS block wall had a higher damping efficiency of 16.87% compared to the Alpha hollow block for the signal reading on the floor next to the mill, and 18.68% for the signal reading on the mill body. The modified concrete used in the production of the APS hollow blocks enabled the effective use of two recycled materials, SBR rubber and polyethylene terephthalate, in the form of PET flakes.
RESUMO
Our research focused on the influence of fillers obtained from crushed waste materials on the selected properties of concrete composites. The used waste materials were sourced from the production of ceramic tiles, ceramic pots, and sanitary ceramics. We evaluated concretes modified with the addition of 10% (by mass of cement) of different fillers. The properties, including the air content in the fresh concrete mix, consistency, compressive strength, and freeze-thaw resistance were examined. The evaluation of the freeze-thaw resistance was carried out by testing the concrete with the direct method for 150 cycles of freezing and thawing. The characteristics of the concrete porosity structure were assessed using automated digital image analysis. Concretes modified by coarse and fine fillers were characterized by different improvements in the mechanical properties and resistance to cycles of freezing and thawing. Composites with the addition of coarse fillers did not show any significant changes in comparison to the control concrete. An automated digital image analysis of the pore distribution in concrete proved to be an effective tool for the assessment of the freeze-thaw resistance of the concretes in question.
RESUMO
Many byproducts and waste materials with pozzolanic properties can substitute natural raw materials in cement production. Some of these waste materials like fly ash and blast furnace slag are commonly harnessed by cement industry. Others are of seldom use due to limitations of the very centralized cement production systems currently in use. In the authors opinion, it is necessary to change this system to enable efficient utilization of various waste materials that are available locally (e.g., white and red ceramics). In this study, a new partially centralized system of cement production is proposed. The adoption of a new system would significantly reduce the volume of long-distance transportation and enable utilization of numerous locally available waste materials that are currently dismissed. The last stage of production of the ready-to-use cement would take place in situ. The cement would be produced on demand and be immediately used for concrete production on-site. The research program was conducted considering the importance of the quality of cements obtained in the new way, substituting up to 12% of its mass by white ceramics. The research program was proof of concept of the proposed cement production system. It was shown that the quality of "in situ cement" does not differ from standard cements.