Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(2): 101023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947183

RESUMO

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Assuntos
Transtornos do Neurodesenvolvimento , Reinfecção , Humanos , Leucócitos Mononucleares , Síndrome , Fenótipo , Arritmias Cardíacas/genética , Transtornos do Neurodesenvolvimento/genética , Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética
2.
Brain ; 145(9): 3308-3327, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35851598

RESUMO

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas rac de Ligação ao GTP , Animais , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Fenótipo , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
3.
Am J Med Genet A ; 185(7): 2094-2101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938623

RESUMO

3q29 deletion syndrome (3q29del) is a recurrent deletion syndrome associated with neuropsychiatric disorders and congenital anomalies. Dysmorphic facial features have been described but not systematically characterized. This study aims to detail the 3q29del craniofacial phenotype and use a machine learning approach to categorize individuals with 3q29del through analysis of 2D photos. Detailed dysmorphology exam and 2D facial photos were ascertained from 31 individuals with 3q29del. Photos were used to train the next-generation phenotyping algorithm DeepGestalt (Face2Gene by FDNA, Inc, Boston, MA) to distinguish 3q29del cases from controls and all other recognized syndromes. Area under the curve of receiver operating characteristic curves (AUC-ROC) was used to determine the capacity of Face2Gene to identify 3q29del cases against controls. In this cohort, the most common observed craniofacial features were prominent forehead (48.4%), prominent nose tip (35.5%), and thin upper lip vermillion (25.8%). The FDNA technology showed an ability to distinguish cases from controls with an AUC-ROC value of 0.873 (p = 0.006) and led to the inclusion of 3q29del as one of the supported syndromes. This study found a recognizable facial pattern in 3q29del, as observed by trained clinical geneticists and next-generation phenotyping technology. These results expand the potential application of automated technology such as FDNA in identifying rare genetic syndromes, even when facial dysmorphology is subtle.


Assuntos
Variação Biológica da População/genética , Anormalidades Craniofaciais/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Cromossomos Humanos Par 3/genética , Anormalidades Craniofaciais/patologia , Face , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Deleção de Sequência/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA