Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Transl Med ; 15(695): eadf6724, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163614

RESUMO

Checkpoint immunotherapy has yielded meaningful responses across many cancers but has shown modest efficacy in advanced prostate cancer. B7 homolog 3 protein (B7-H3/CD276) is an immune checkpoint molecule and has emerged as a promising therapeutic target. However, much remains to be understood regarding B7-H3's role in cancer progression, predictive biomarkers for B7-H3-targeted therapy, and combinatorial strategies. Our multi-omics analyses identified B7-H3 as one of the most abundant immune checkpoints in prostate tumors containing PTEN and TP53 genetic inactivation. Here, we sought in vivo genetic evidence for, and mechanistic understanding of, the role of B7-H3 in PTEN/TP53-deficient prostate cancer. We found that loss of PTEN and TP53 induced B7-H3 expression by activating transcriptional factor Sp1. Prostate-specific deletion of Cd276 resulted in delayed tumor progression and reversed the suppression of tumor-infiltrating T cells and NK cells in Pten/Trp53 genetically engineered mouse models. Furthermore, we tested the efficacy of the B7-H3 inhibitor in preclinical models of castration-resistant prostate cancer (CRPC). We demonstrated that enriched regulatory T cells and elevated programmed cell death ligand 1 (PD-L1) in myeloid cells hinder the therapeutic efficacy of B7-H3 inhibition in prostate tumors. Last, we showed that B7-H3 inhibition combined with blockade of PD-L1 or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) achieved durable antitumor effects and had curative potential in a PTEN/TP53-deficient CRPC model. Given that B7-H3-targeted therapies have been evaluated in early clinical trials, our studies provide insights into the potential of biomarker-driven combinatorial immunotherapy targeting B7-H3 in prostate cancer, among other malignancies.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima , Progressão da Doença
3.
Mol Cancer Ther ; 21(6): 879-889, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364607

RESUMO

MCL-1 is known to play a major role in resistance to BCL-2 inhibition, but the contribution of other BCL-2 family proteins has not been fully explored. We, here, demonstrate the ineffectiveness of MCL-1 inhibitor AMG176 in venetoclax-resistant, and conversely, of venetoclax in AMG176-resistant acute myelogenous leukemia (AML). Like cells with acquired resistance to venetoclax, cells with acquired resistance to AMG176 express increased MCL-1. Both cells with acquired resistance to venetoclax and to AMG176 express increased levels of BCL-2 and BCL-2A1, decreased BAX, and/or altered levels of other BCL-2 proteins. Cotargeting BCL-2 and MCL-1 was highly synergistic in AML cell lines with intrinsic or acquired resistance to BH3 mimetics or engineered to genetically overexpress BCL-2 or BCL-2A1 or downregulate BAX. The combination effectively eliminated primary AML blasts and stem/progenitor cells resistant to or relapsed after venetoclax-based therapy irrespective of mutations and cytogenetic abnormalities. Venetoclax and AMG176 combination markedly suppressed antiapoptotic BCL-2 proteins and AML stem/progenitor cells and dramatically extended mouse survival (median 336 vs. control 126 days; P < 0.0001) in a patient-derived xenograft (PDX) model developed from a venetoclax/hypomethylating agent therapy-resistant patient with AML. However, decreased BAX levels in the bone marrow residual leukemia cells after 4-week combination treatment may represent a resistance mechanism that contributed to their survival. Enhanced antileukemia activity was also observed in a PDX model of monocytic AML, known to be resistant to venetoclax therapy. Our results support codependence on multiple antiapoptotic BCL-2 proteins and suppression of BAX as mechanisms of AML resistance to individual BH3 mimetics. Cotargeting of MCL-1 and BCL-2 eliminates otherwise apoptosis-resistant cells.


Assuntos
Proteínas Reguladoras de Apoptose , Materiais Biomiméticos , Leucemia Mieloide Aguda , Animais , Apoptose , Materiais Biomiméticos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Células-Tronco/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
4.
Haematologica ; 107(1): 58-76, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33353284

RESUMO

MCL-1 and BCL-2 are both frequently overexpressed in acute myeloid leukemia and critical for the survival of acute myeloid leukemia cells and acute myeloid leukemia stem cells. MCL-1 is a key factor in venetoclax resistance. Using genetic and pharmacological approaches, we discovered that MCL-1 regulates leukemia cell bioenergetics and carbohydrate metabolisms, including the TCA cycle, glycolysis and pentose phosphate pathway and modulates cell adhesion proteins and leukemia-stromal interactions. Inhibition of MCL-1 sensitizes to BCL-2 inhibition in acute myeloid leukemia cells and acute myeloid leukemia stem/progenitor cells, including those with intrinsic and acquired resistance to venetoclax through cooperative release of pro-apoptotic BIM, BAX, and BAK from binding to anti-apoptotic BCL-2 proteins and inhibition of cell metabolism and key stromal microenvironmental mechanisms. The combined inhibition of MCL-1 by MCL-1 inhibitor AZD5991 or CDK9 inhibitor AZD4573 and BCL-2 by venetoclax greatly extended survival of mice bearing patient-derived xenografts established from an acute myeloid leukemia patient who acquired resistance to venetoclax/decitabine. These results demonstrate that co-targeting MCL-1 and BCL-2 improves the efficacy of and overcomes preexisting and acquired resistance to BCL-2 inhibition. Activation of metabolomic pathways and leukemia-stroma interactions are newly discovered functions of MCL-1 in acute myeloid leukemia, which are independent from canonical regulation of apoptosis by MCL-1. Our data provide new mechanisms of synergy and rationale for co-targeting MCL-1 and BCL-2 clinically in patients with acute myeloid leukemia and potentially other cancers.


Assuntos
Leucemia Mieloide Aguda , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia
5.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270918

RESUMO

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

7.
Sci Rep ; 11(1): 12388, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117319

RESUMO

Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput.


Assuntos
Separação Celular/métodos , Leucócitos Mononucleares/citologia , Espectrometria de Massas/métodos , Células Cultivadas , Humanos , Imunoensaio/métodos , Leucócitos Mononucleares/classificação , Análise de Célula Única/métodos
8.
Blood ; 137(5): 624-636, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32902645

RESUMO

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Assuntos
Sangue Fetal/citologia , Imunoterapia Adotiva , Interleucina-15/genética , Células Matadoras Naturais/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Aerobiose , Animais , Antígenos CD19/imunologia , Linfoma de Burkitt/patologia , Linfoma de Burkitt/terapia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glicólise , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Antígenos Quiméricos , Transdução de Sinais/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
bioRxiv ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32995792

RESUMO

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

10.
Haematologica ; 105(3): 697-707, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31123034

RESUMO

The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Apoptose , Azetidinas , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Piperidinas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas
11.
Haematologica ; 105(5): 1274-1284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31371419

RESUMO

Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Animais , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética
12.
Mol Cancer Ther ; 18(9): 1615-1627, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227645

RESUMO

In B-cell acute lymphoblastic leukemia (B-ALL), activation of Notch signaling leads to cell-cycle arrest and apoptosis. We aimed to harness knowledge acquired by understanding a mechanism of Notch-induced cell death to elucidate a therapeutically viable target in B-ALL. To this end, we identified that Notch activation suppresses Polo-like kinase 1 (PLK1) in a B-ALL-specific manner. We identified that PLK1 is expressed in all subsets of B-ALL and is highest in Philadelphia-like (Ph-like) ALL, a high-risk subtype of disease. We biochemically delineated a mechanism of Notch-induced PLK1 downregulation that elucidated stark regulation of p53 in this setting. Our findings identified a novel posttranslational cascade initiated by Notch in which CHFR was activated via PARP1-mediated PARylation, resulting in ubiquitination and degradation of PLK1. This led to hypophosphorylation of MDM2Ser260, culminating in p53 stabilization and upregulation of BAX. shRNA knockdown or pharmacologic inhibition of PLK1 using BI2536 or BI6727 (volasertib) in B-ALL cell lines and patient samples led to p53 stabilization and cell death. These effects were seen in primary human B-ALL samples in vitro and in patient-derived xenograft models in vivo These results highlight PLK1 as a viable therapeutic target in B-ALL. Efficacy of clinically relevant PLK1 inhibitors in B-ALL patient-derived xenograft mouse models suggests that use of these agents may be tailored as an additional therapeutic strategy in future clinical studies.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Receptores Notch/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oncogenes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinase 1 Polo-Like
13.
Cancer Res ; 79(6): 1165-1177, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30674535

RESUMO

The apoptosis repressor with caspase recruitment domain (ARC) protein is a strong independent adverse prognostic marker in acute myeloid leukemia (AML). We previously reported that ARC regulates leukemia-microenvironment interactions through the NFκB/IL1ß signaling network. Malignant cells have been reported to release IL1ß, which induces PGE2 synthesis in mesenchymal stromal cells (MSC), in turn activating ß-catenin signaling and inducing the cancer stem cell phenotype. Although Cox-2 and its enzymatic product PGE2 play major roles in inflammation and cancer, the regulation and role of PGE2 in AML are largely unknown. Here, we report that AML-MSC cocultures greatly increase Cox-2 expression in MSC and PGE2 production in an ARC/IL1ß-dependent manner. PGE2 induced the expression of ß-catenin, which regulated ARC and augmented chemoresistance in AML cells; inhibition of ß-catenin decreased ARC and sensitized AML cells to chemotherapy. NOD/SCIDIL2RγNull-3/GM/SF mice transplanted with ARC-knockdown AML cells had significantly lower leukemia burden, lower serum levels of IL1ß/PGE2, and lower tissue human ARC and ß-catenin levels, prolonged survival, and increased sensitivity to chemotherapy than controls. Collectively, we present a new mechanism of action of antiapoptotic ARC by which ARC regulates PGE2 production in the tumor microenvironment and microenvironment-mediated chemoresistance in AML.Significance: The antiapoptotic protein ARC promotes AML aggressiveness by enabling detrimental cross-talk with bone marrow mesenchymal stromal cells.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Proteínas do Citoesqueleto/farmacologia , Dinoprostona/farmacologia , Resistencia a Medicamentos Antineoplásicos , Interleucina-1beta/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas do Tecido Nervoso/farmacologia , Microambiente Tumoral , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Ciclo-Oxigenase 2/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ocitócicos/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
14.
Clin Cancer Res ; 24(10): 2417-2429, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29463558

RESUMO

Purpose: Wnt/ß-catenin signaling is required for leukemic stem cell function. FLT3 mutations are frequently observed in acute myeloid leukemia (AML). Anomalous FLT3 signaling increases ß-catenin nuclear localization and transcriptional activity. FLT3 tyrosine kinase inhibitors (TKI) are used clinically to treat FLT3-mutated AML patients, but with limited efficacy. We investigated the antileukemia activity of combined Wnt/ß-catenin and FLT3 inhibition in FLT3-mutant AML.Experimental Design: Wnt/ß-catenin signaling was inhibited by the ß-catenin/CBP antagonist C-82/PRI-724 or siRNAs, and FLT3 signaling by sorafenib or quizartinib. Treatments on apoptosis, cell growth, and cell signaling were assessed in cell lines, patient samples, and in vivo in immunodeficient mice by flow cytometry, Western blot, RT-PCR, and CyTOF.Results: We found significantly higher ß-catenin expression in cytogenetically unfavorable and relapsed AML patient samples and in the bone marrow-resident leukemic cells compared with circulating blasts. Disrupting Wnt/ß-catenin signaling suppressed AML cell growth, induced apoptosis, abrogated stromal protection, and synergized with TKIs in FLT3-mutated AML cells and stem/progenitor cells in vitro The aforementioned combinatorial treatment improved survival of AML-xenografted mice in two in vivo models and impaired leukemia cell engraftment. Mechanistically, the combined inhibition of Wnt/ß-catenin and FLT3 cooperatively decreased nuclear ß-catenin and the levels of c-Myc and other Wnt/ß-catenin and FLT3 signaling proteins. Importantly, ß-catenin inhibition abrogated the microenvironmental protection afforded the leukemic stem/progenitor cells.Conclusions: Disrupting Wnt/ß-catenin signaling exerts potent activities against AML stem/progenitor cells and synergizes with FLT3 inhibition in FLT3-mutant AML. These findings provide a rationale for clinical development of this strategy for treating FLT3-mutated AML patients. Clin Cancer Res; 24(10); 2417-29. ©2018 AACR.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Via de Sinalização Wnt/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
15.
Oncotarget ; 8(57): 96496-96505, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228548

RESUMO

Anti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of in vivo experiments in both immune competent and nude mouse models. Given the pro-angiogenic properties of tumor-associated macrophages (TAMs) and the dominant role of CSF1R in macrophage function, we added CSF1R inhibitors following emergence of adaptive resistance to anti-VEGF antibody. Mice treated with a CSF1R inhibitor (AC708) after anti-VEGF antibody resistance had little to no measurable tumor burden upon completion of the experiment while those that did not receive a CSF1R inhibitor still had abundant tumor. To mimic clinically used regimens, mice were also treated with anti-VEGF antibody and paclitaxel until resistance emerged, and then a CSF1R inhibitor was added. The addition of a CSF1R inhibitor restored response to anti-angiogenesis therapy, resulting in 83% lower tumor burden compared to treatment with anti-VEGF antibody and paclitaxel alone. Collectively, our data demonstrate that the addition of a CSF1R inhibitor to anti-VEGF therapy and taxane chemotherapy results in robust anti-tumor effects.

16.
Sci Rep ; 7(1): 3779, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630464

RESUMO

Mass cytometry presents an exceptional opportunity to interrogate the biology of highly heterogeneous cell populations, owing to the ability to collect highly parametric proteomic data at a single cell level. However, sample-to-sample variability, due to antibody staining and/or instrument sensitivity, can introduce substantial artifacts into the data, which can in turn lead to erroneous conclusions. This variability can be eliminated by sample barcoding which enables samples to be pooled, stained and run simultaneously. Existing mass cytometry barcoding approaches require time intensive labeling, reduce the number of biologically meaningful parameters and/or rely on expensive reagents. We present an approach utilizing monoisotopic cisplatin to perform cell barcoding that does not require cell permeabilization, can be completed in 10 minutes and can be utilized in combination with existing barcoding techniques to greatly increase the number of samples which can be multiplexed to improve throughput and consistency.


Assuntos
Cisplatino/farmacologia , Cisplatino/farmacocinética , Células-Tronco Embrionárias Humanas/metabolismo , Espectrometria de Massas/métodos , Tipagem Molecular/métodos , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos
17.
Mol Cancer Ther ; 16(6): 1133-1144, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28270436

RESUMO

Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics (P = 2 × 10-4) and relapse (P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3-ITD (P = 0.0024) or RAS (P = 0.05) mutations and strongly correlated with p-SRC and integrinß3 levels. FAK protein levels were significantly higher in CD34+ (P = 5.42 × 10-20) and CD34+CD38- MDS (P = 7.62 × 10-9) cells compared with normal CD34+ cells. MDS patients with higher FAK in CD34+ cells tended to have better overall survival (P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Adesão Celular , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Gut ; 66(2): 215-225, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27507904

RESUMO

OBJECTIVE: Oesophageal squamous cell carcinoma (ESCC) is a heterogeneous disease with variable outcomes that are challenging to predict. A better understanding of the biology of ESCC recurrence is needed to improve patient care. Our goal was to identify small non-coding RNAs (sncRNAs) that could predict the likelihood of recurrence after surgical resection and to uncover potential molecular mechanisms that dictate clinical heterogeneity. DESIGN: We developed a robust prediction model for recurrence based on the analysis of the expression profile data of sncRNAs from 108 fresh frozen ESCC specimens as a discovery set and assessment of the associations between sncRNAs and recurrence-free survival (RFS). We also evaluated the mechanistic and therapeutic implications of sncRNA obtained through integrated analysis from multiple datasets. RESULTS: We developed a risk assessment score (RAS) for recurrence with three sncRNAs (microRNA (miR)-223, miR-1269a and nc886) whose expression was significantly associated with RFS in the discovery cohort (n=108). RAS was validated in an independent cohort of 512 patients. In multivariable analysis, RAS was an independent predictor of recurrence (HR, 2.27; 95% CI, 1.26 to 4.09; p=0.007). This signature implies the expression of ΔNp63 and multiple alterations of driver genes like PIK3CA. We suggested therapeutic potentials of immune checkpoint inhibitors in low-risk patients, and Polo-like kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and histone deacetylase inhibitors in high-risk patients. CONCLUSION: We developed an easy-to-use prognostic model with three sncRNAs as robust prognostic markers for postoperative recurrence of ESCC. We anticipate that such a stratified and systematic, tumour-specific biological approach will potentially contribute to significant improvement in ESCC treatment.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , MicroRNAs/análise , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/cirurgia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Intervalo Livre de Doença , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/cirurgia , Feminino , Genômica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/genética , Valor Preditivo dos Testes , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Medição de Risco , Biologia de Sistemas , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Quinase 1 Polo-Like
19.
Sci Transl Med ; 8(355): 355ra117, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605552

RESUMO

BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin(-)Sca-1(+)cKit(+) cells of inducible CML in mice, as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin(-)Sca-1(+)cKit(+) cell numbers and long-term stem cell frequency and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34(+)CD38(-), CD34(+)CD38(+), and quiescent stem/progenitor CD34(+) cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic-phase and BC CML.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Crise Blástica/tratamento farmacológico , Crise Blástica/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Camundongos Transgênicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
20.
Oncotarget ; 7(34): 55083-55097, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27391151

RESUMO

mTOR activation leads to enhanced survival signaling in acute myeloid leukemia (AML) cells. The active-site mTOR inhibitors (asTORi) represent a promising new approach to targeting mTOR in AKT/mTOR signaling. MLN0128 is an orally-administered, second-generation asTORi, currently in clinical development. We examined the anti-leukemic effects and the mechanisms of action of MLN0128 in AML cell lines and primary samples, with a particular focus on its effect in AML stem/progenitor cells. MLN0128 inhibited cell proliferation and induced apoptosis in AML by attenuating the activity of mTOR complex 1 and 2. Using time-of-flight mass cytometry, we demonstrated that MLN0128 selectively targeted and functionally inhibited AML stem/progenitor cells with high AKT/mTOR signaling activity. Using the reverse-phase protein array technique, we measured expression and phosphorylation changes in response to MLN0128 in 151 proteins from 24 primary AML samples and identified several pro-survival pathways that antagonize MLN0128-induced cellular stress. A combined blockade of AKT/mTOR signaling and these pro-survival pathways facilitated AML cell killing. Our findings provide a rationale for the clinical use of MLN0128 to target AML and AML stem/progenitor cells, and support the use of combinatorial multi-targeted approaches in AML therapy.


Assuntos
Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Leucemia Mieloide/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Doença Aguda , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA