Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Microbes Infect ; : 105376, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852904

RESUMO

Host heterogeneity in pulmonary tuberculosis leads to varied responses to infection and drug treatment. The present portfolio of anti-TB drugs needs to be boosted with new drugs and drug regimens. Macozinone, a clinical-stage molecule targeting the essential enzyme, DprE1, represents an attractive option. Mice (I/St, B6, (AKRxI/St)F1, B6.I-100 and B6.I-139) genetically diverse susceptibility to Mycobacterium tuberculosis (Mtb) H37Rv infection were subjected to aerosol- or intravenous infection to determine the efficacy of macozinone (MCZ). They were treated with macozinone or reference drugs (isoniazid, rifampicin). Lung and spleen bacterial burdens were measured at four and eight weeks post-infection. Lung histology was evaluated at four weeks of treatment. Treatment with macozinone resulted in a statistically significant reduction in the bacterial load in the lungs and spleen as early as four weeks after treatment initiation in mice susceptible or resistant to Mtb infection. In the TB hypoxic granuloma model, macozinone was more potent than rifampicin in reducing the CFU counts. However, histopathological analysis revealed significant lung changes in I/St mice after eight weeks of treatment initiation. Macozinone demonstrated efficacy to varying degrees across all mouse models of Mtb infection used. These results should facilitate its further development and potential introduction into clinical practice.

2.
Life Sci Alliance ; 7(7)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38744470

RESUMO

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Assuntos
Benzotiazóis , Sinergismo Farmacológico , Mycobacterium marinum , Peixe-Zebra , Animais , Benzotiazóis/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Rifampina/farmacologia
3.
Front Microbiol ; 15: 1357708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435690

RESUMO

Pseudomonas aeruginosa is a major human pathogen, able to establish difficult-to-treat infections in immunocompromised and people with cystic fibrosis (CF). The high rate of antibiotic treatment failure is due to its notorious drug resistance, often mediated by the formation of persistent biofilms. Alternative strategies, capable of overcoming P. aeruginosa resistance, include antivirulence compounds which impair bacterial pathogenesis without exerting a strong selective pressure, and the use of antimicrobial adjuvants that can resensitize drug-resistant bacteria to specific antibiotics. In this work, the dispirotripiperazine derivative PDSTP, already studied as antiviral, was characterized for its activity against P. aeruginosa adhesion to epithelial cells, its antibiotic adjuvant ability and its biofilm inhibitory potential. PDSTP was effective in impairing the adhesion of P. aeruginosa to various immortalized cell lines. Moreover, the combination of clinically relevant antibiotics with the compound led to a remarkable enhancement of the antibiotic efficacy towards multidrug-resistant CF clinical strains. PDSTP-ceftazidime combination maintained its efficacy in vivo in a Galleria mellonella infection model. Finally, the compound showed a promising biofilm inhibitory activity at low concentrations when tested both in vitro and using an ex vivo pig lung model. Altogether, these results validate PDSTP as a promising compound, combining the ability to decrease P. aeruginosa virulence by impairing its adhesion and biofilm formation, with the capability to increase antibiotic efficacy against antibiotic resistant strains.

4.
Purinergic Signal ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526670

RESUMO

The P2Y6 receptor, activated by uridine diphosphate (UDP), is a target for antagonists in inflammatory, neurodegenerative, and metabolic disorders, yet few potent and selective antagonists are known to date. This prompted us to use machine learning as a novel approach to aid ligand discovery, with pharmacological evaluation at three P2YR subtypes: initially P2Y6 and subsequently P2Y1 and P2Y14. Relying on extensive published data for P2Y6R agonists, we generated and validated an array of classification machine learning model using the algorithms deep learning (DL), adaboost classifier (ada), Bernoulli NB (bnb), k-nearest neighbors (kNN) classifier, logistic regression (lreg), random forest classifier (rf), support vector classification (SVC), and XGBoost (XGB) classifier models, and the common consensus was applied to molecular selection of 21 diverse structures. Compounds were screened using human P2Y6R-induced functional calcium transients in transfected 1321N1 astrocytoma cells and fluorescent binding inhibition at closely related hP2Y14R expressed in CHO cells. The hit compound ABBV-744, an experimental anticancer drug with a 6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine scaffold, had multifaceted interactions with the P2YR family: hP2Y6R inhibition in a non-surmountable fashion, suggesting that noncompetitive antagonism, and hP2Y1R enhancement, but not hP2Y14R binding inhibition. Other machine learning-selected compounds were either weak (experimental anti-asthmatic drug AZD5423 with a phenyl-1H-indazole scaffold) or inactive in inhibiting the hP2Y6R. Experimental drugs TAK-593 and GSK1070916 (100 µM) inhibited P2Y14R fluorescent binding by 50% and 38%, respectively, and all other compounds by < 20%. Thus, machine learning has led the way toward revealing previously unknown modulators of several P2YR subtypes that have varied effects.

5.
ACS Chem Neurosci ; 15(3): 560-571, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38216514

RESUMO

Vindeburnol (VIND, RU24722, BC19), a synthetic molecule derived from the eburnamine-vincamine alkaloid group, has many neuropsychopharmacological effects, but its antidepressant-like effects are poorly understood and have only been described in a few patents. To reliably estimate this effect, vindeburnol was studied in a model of long-term variable-frequency ultrasound (US) exposure at 20-45 kHz in male Wistar rats and BALB/c mice. Vindeburnol was administered chronically for 21 days against a background of simultaneous ultrasound exposure at a dose of 20 mg/kg intraperitoneally (IP). Using four behavioral tests, the sucrose preference test (SPT), the social interaction test (SIT), the open field test (OFT), and the forced swimming test (FST), we found that the treatment with the compound diminished depression-like symptoms in mice and rats. The compound restored the ultrasound-related reduced sucrose consumption to control levels and increased social interaction time in mice and rats compared with those in ultrasound-exposed animals. Vindeburnol showed contraversive results of horizontal and vertical activity in both species and generally did not increase locomotor activity. At the same time, the compound showed a specific effect in the FST, significantly reducing the immobility time. Moreover, we found an increase in norepinephrine, dopamine, and its metabolite levels in the brainstem, as well as an increase in dopamine, 3-methoxytyramine, and 3,4-dihydroxyphenylacetic acid levels in the striatum. We also observed a statistically significant increase in tyrosine hydroxylase (TH) levels in the region containing the locus coeruleus (LC). We suggest that using its distinct chemical structure and pharmacological activity as a starting point could boost antidepressant drug discovery.


Assuntos
Dopamina , Vincamina , Ratos , Camundongos , Masculino , Animais , Dopamina/metabolismo , Depressão/tratamento farmacológico , Ratos Wistar , Vincamina/farmacologia , Antidepressivos/farmacologia , Natação , Sacarose , Modelos Animais de Doenças
6.
Antiviral Res ; 222: 105810, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38244889

RESUMO

Rhinoviruses (RVs) cause the common cold. Attempts at discovering small molecule inhibitors have mainly concentrated on compounds supplanting the medium chain fatty acids residing in the sixty icosahedral symmetry-related hydrophobic pockets of the viral capsid of the Rhinovirus-A and -B species. High-affinity binding to these pockets stabilizes the capsid against structural changes necessary for the release of the ss(+) RNA genome into the cytosol of the host cell. However, single-point mutations may abolish this binding. RV-B5 is one of several RVs that are naturally resistant against the well-established antiviral agent pleconaril. However, RV-B5 is strongly inhibited by the pyrazolopyrimidine OBR-5-340. Here, we report on isolation and characterization of RV-B5 mutants escaping OBR-5-340 inhibition and show that substitution of amino acid residues not only within the binding pocket but also remote from the binding pocket hamper inhibition. Molecular dynamics network analysis revealed that strong inhibition occurs when an ensemble of several sequence stretches of the capsid proteins enveloping OBR-5-340 move together with OBR-5-340. Mutations abrogating this dynamic, regardless of whether being localized within the binding pocket or distant from it result in escape from inhibition. Pyrazolo [3,4-d]pyrimidine derivatives overcoming OBR-5-340 escape of various RV-B5 mutants were identified. Our work contributes to the understanding of the properties of capsid-binding inhibitors necessary for potent and broad-spectrum inhibition of RVs.


Assuntos
Proteínas do Capsídeo , Infecções por Enterovirus , Humanos , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Rhinovirus/genética , Sítios de Ligação , Infecções por Enterovirus/metabolismo , Simulação de Dinâmica Molecular , Mutação , Antivirais/química
7.
Eur J Med Chem ; 264: 115976, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039794

RESUMO

A series of novel benzothiozinone (BTZ) derivatives were designed, prepared and evaluated for antituberculosis activity. Specifically, the BTZ pharmacophore is retained and the previous heterocyclic ring linker is replaced by alkynyl or vinyl linker, the resulting compounds displayed about 5-fold improved antimycobacterial activity. We further revealed that the linker attached tail group affects the compound metabolic stability, potency and other drug like properties. This work led to the discovery of two compounds (A1 and A11) with acceptable low MICs and improved metabolic stability. The representative compound A11 demonstrated bactericidal efficacy in an acute TB infection mouse model.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Camundongos , Animais , Antituberculosos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
8.
J Pharm Biomed Anal ; 239: 115917, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101239

RESUMO

The eburnamine-vincamine alkaloids exhibit a range of pharmacological activities. There is a limited understanding of the pharmacokinetics and pharmacodynamics of vindeburnol, a synthetic derivative of this chemical class of alkaloids. A fast and reliable UPLC-HRMS method was developed and validated to quantify vindeburnol in Soviet Chinchilla rabbit plasma from pharmacokinetics studies. An ultra-performance liquid chromatography system equipped with a Waters Acquity UPLC HSS T3 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile. An Impact II QqTOF high-resolution mass spectrometer equipped with an Apollo II electrospray ionization source was used for analysis in positive mode; the ions [M+H]+m/z 269.1648 ± 0.003 and m/z 351.2067 ± 0.003 were monitored for vindeburnol and internal standard (vinpocetine), respectively. Preliminary metabolite profiling was also performed, and the pharmacokinetics of the identified metabolites were evaluated. The mean retention times for vindeburnol and vinpocetine were 2.0 and 3.5 min. The UPLC-HRMS method was validated with accuracy and precision within the 15% acceptance limit (8.2% and 11.0%, respectively). The mean extraction recovery value of vindeburnol from rabbit plasma was 77%. Pharmacokinetic evaluation of vindeburnol revealed that the compound is distributed rapidly with a short elimination half-life. Vindeburnol undergoes extensive first-pass metabolism and is metabolized into hydroxyvindeburnol and vindeburnol glucuronide.


Assuntos
Alcaloides , Antineoplásicos , Vincamina , Coelhos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides/farmacocinética , Reprodutibilidade dos Testes
9.
ACS Omega ; 8(43): 40817-40822, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929131

RESUMO

There have been relatively few small molecules developed with direct activity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two existing antimalarial drugs, pyronaridine and quinacrine, display whole cell activity against SARS-CoV-2 in A549 + ACE2 cells (pretreatment, IC50 = 0.23 and 0.19 µM, respectively) with moderate cytotoxicity (CC50 = 11.53 and 9.24 µM, respectively). Moreover, pyronaridine displays in vitro activity against SARS-CoV-2 PLpro (IC50 = 1.8 µM). Given their existing antiviral activity, these compounds are strong candidates for repurposing against COVID-19 and prompt us to study the structure-activity relationship of the 9-aminoacridine scaffold against SARS-CoV-2 using traditional medicinal chemistry to identify promising new analogs. Our studies identified several novel analogs possessing potent in vitro activity in U2-OS ACE2 GFP 1-10 and 1-11 (IC50 < 1.0 µM) as well as moderate cytotoxicity (CC50 > 4.0 µM). Compounds such as 7g, 9c, and 7e were more active, demonstrating selectivity indices SI > 10, and 9c displayed the strongest activity (IC50 ≤ 0.42 µM, CC50 ≥ 4.41 µM, SI > 10) among them, indicating that it has potential as a new lead molecule in this series against COVID-19.

10.
ACS Omega ; 8(45): 42951-42965, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024733

RESUMO

Yellow fever virus (YFV) transmitted by infected mosquitoes causes an acute viral disease for which there are no approved small-molecule therapeutics. Our recently developed machine learning models for YFV inhibitors led to the selection of a new pyrazolesulfonamide derivative RCB16003 with acceptable in vitro activity. We report that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class, which was recently identified as active non-nucleoside reverse transcriptase inhibitors against HIV-1, can also be repositioned as inhibitors of yellow fever virus replication. As compared to other Flaviviridae or Togaviridae family viruses tested, both compounds RCB16003 and RCB16007 demonstrate selectivity for YFV over related viruses, with only RCB16007 showing some inhibition of the West Nile virus (EC50 7.9 µM, CC50 17 µM, SI 2.2). We also describe the absorption, distribution, metabolism, and excretion (ADME) in vitro and pharmacokinetics (PK) for RCB16007 in mice. This compound had previously been shown to not inhibit hERG, and we now describe that it has good metabolic stability in mouse and human liver microsomes, low levels of CYP inhibition, high protein binding, and no indication of efflux in Caco-2 cells. A single-dose oral PK study in mice has a T1/2 of 3.4 h and Cmax of 1190 ng/mL, suggesting good availability and stability. We now propose that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class may be prioritized for in vivo efficacy testing against YFV.

11.
J Med Chem ; 66(17): 12459-12467, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37611244

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >296 million people worldwide, including ∼850,000 in the USA, and kills 820,000 annually worldwide. Current nucleos(t)ide analogue (NA) or pegylated interferon α therapies do not eradicate the virus and would benefit from a complementary antiviral drug. We performed a preliminary screen of 28 dispirotripiperazines against HBV, identifying 9 hits with EC50 of 0.7-25 µM. Compound 11826096 displays the most potent activity and represents a promising lead for future optimization. While the mechanism of action is unknown, preliminary assays limit possible targets to activities involved in RNA accumulation, translation, capsid assembly, and/or capsid stability. In addition, we built machine learning models to determine if they were able to predict the activity of this series of compounds. The novelty of these molecules indicated they were outside of the applicability domain of these models.


Assuntos
Antivirais , Vírus da Hepatite B , Humanos , Antivirais/farmacologia , Bioensaio , Capsídeo , Proteínas do Capsídeo
12.
ACS Omega ; 8(28): 25209-25220, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483251

RESUMO

Treatment against tuberculosis can lead to the selection of drug-resistant Mycobacterium tuberculosis strains. To tackle this serious threat, new targets from M. tuberculosis are needed to develop novel effective drugs. In this work, we aimed to provide a possible workflow to validate new targets and inhibitors by combining genetic, in silico, and enzymological approaches. CanB is one of the three M. tuberculosis ß-carbonic anhydrases that catalyze the reversible reaction of CO2 hydration to form HCO3- and H+. To this end, we precisely demonstrated that CanB is essential for the survival of the pathogen in vitro by constructing conditional mutants. In addition, to search for CanB inhibitors, conditional canB mutants were also constructed using the Pip-ON system. By molecular docking and minimum inhibitory concentration assays, we selected three molecules that inhibit the growth in vitro of M. tuberculosis wild-type strain and canB conditional mutants, thus implementing a target-to-drug approach. The lead compound also showed a bactericidal activity by the time-killing assay. We further studied the interactions of these molecules with CanB using enzymatic assays and differential scanning fluorimetry thermal shift analysis. In conclusion, the compounds identified by the in silico screening proved to have a high affinity as CanB ligands endowed with antitubercular activity.

13.
Biomedicines ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509615

RESUMO

Tuberculosis (TB) is a leading infectious disease with serious antibiotic resistance. The benzothiazinone (BTZ) scaffold PBTZ169 kills Mycobacterium tuberculosis (Mtb) through the inhibition of the essential cell wall enzyme decaprenylphosphoryl-ß-D-ribose 2'-oxidase (DprE1). PBTZ169 shows anti-TB potential in animal models and pilot clinical tests. Although highly potent, the BTZ type DprE1 inhibitors in general show extremely low aqueous solubility, which adversely affects the drug-like properties. To improve the compounds physicochemical properties, we generated a series of BTZ analogues. Several optimized compounds had MIC values against Mtb lower than 0.01 µM. The representative compound 37 displays improved solubility and bioavailability compared to the lead compound. Additionally, compound 37 shows Mtb-killing ability in an acute infection mouse model.

14.
RSC Adv ; 13(27): 18253-18261, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350858

RESUMO

Influenza infections are often exacerbated by secondary bacterial infections, primarily caused by Streptococcus pneumoniae. Both respiratory pathogens have neuraminidases that support infection. Therefore, we hypothesized that dual inhibitors of viral and bacterial neuraminidases might be an advantageous strategy for treating seasonal and pandemic influenza pneumonia complicated by bacterial infections. By screening our in-house chemical library, we discovered a new chemotype that may be of interest for a further campaign to find small molecules against influenza. Our exploration of the pyrrolo[2,3-e]indazole space led to the identification of two hit compounds, 6h and 12. These molecules were well-tolerated by MDCK cells and inhibited the replication of H3N2 and H1N1 influenza A virus strains. Moreover, both compounds suppress viral and pneumococcal neuraminidases indicating their dual activity. Given its antiviral activity, pyrrolo[2,3-e]indazole has been identified as a promising scaffold for the development of novel neuraminidase inhibitors that are active against influenza A virus and S. pneumoniae.

15.
Antiviral Res ; 216: 105654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327878

RESUMO

Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Camundongos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Microscopia Crioeletrônica , Infecções por Enterovirus/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Doença de Mão, Pé e Boca/tratamento farmacológico , Enterovirus Humano B
16.
J Med Chem ; 66(9): 6193-6217, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130343

RESUMO

Highly active antiretroviral therapy (HAART) has revolutionized human immunodeficiency virus (HIV) healthcare, turning it from a terminal to a potentially chronic disease, although some patients can develop severe comorbidities. These include neurological complications, such as HIV-associated neurocognitive disorders (HAND), which result in cognitive and/or motor function symptoms. We now describe the discovery, synthesis, and evaluation of a new class of N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) aimed at avoiding HAND. The most promising molecule, 12126065, exhibited antiviral activity against wild-type HIV-1 in TZM cells (EC50 = 0.24 nM) with low in vitro cytotoxicity (CC50 = 4.8 µM) as well as retained activity against clinically relevant HIV mutants. 12126065 also demonstrated no in vivo acute or subacute toxicity, good in vivo brain penetration, and minimal neurotoxicity in mouse neurons up to 10 µM, with a 50% toxicity concentration (TC50) of >100 µM, well below its EC50.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Animais , Camundongos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/toxicidade , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV
17.
Microbiol Spectr ; 11(1): e0232722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36507624

RESUMO

Macozinone (MCZ; PBTZ169) is a first-in-class antituberculosis clinical-stage benzothiazinone-based drug candidate. Although its efficacy and safety have been strongly proven in several preclinical and clinical studies, the physicochemical and pharmacokinetic properties specific to MCZ required further optimization. Accordingly, this study aimed to evaluate the pharmacokinetics of MCZ administered as extended-release (ER) tablets F2 and F6 compared to immediate-release (IR) dispersible tablets for oral suspension. Oral absorption of MCZ from ER tablets was significantly different from that of IR tablets after a single oral dose in Beagle dogs in both fasted and fed states. In addition, food directly affects the bioavailability of MCZ from ER tablets but does not affect it from IR tablets. The high values of relative bioavailability of the prolonged-release tablets F2 and F6 compared to the IR tablets may indicate an indirect confirmation of their gastroretentive properties. Taken together, pharmacokinetic parameters have demonstrated that these MCZ oral formulations not just enhance drug bioavailability but may also improve regimen adherence by reducing MCZ dose frequency and reducing the development of drug resistance. IMPORTANCE Macozinone (MCZ) is the newest first-in-class clinical-stage benzothiazinone-based drug candidate for the treatment of tuberculosis. Yet, the extremely low oral bioavailability of MCZ, a major problem in clinical trials, needed to be addressed, and we are pleased to present our attempts to solve this issue. We report that extended-release tablets of MCZ significantly increased key pharmacokinetic parameters in the preclinical setting. We suggest that these MCZ oral formulations not just enhance drug bioavailability but may also improve regimen adherence by reducing MCZ dose frequency and reducing the development of drug resistance.


Assuntos
Antituberculosos , Piperazinas , Cães , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Comprimidos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36563654

RESUMO

Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169. These plasma sample analyses revealed the presence of several additional metabolites among which the most prominent was H2PBTZ, a reduced species obtained by dearomatization of macozinone, one of the first examples of Meisenheimer Complex (MC) metabolites identified in mammals. Identification of these new metabolites required the optimization of our original method for enhancing the selectivity between isobaric metabolites as well as for ensuring optimal stability for H2PBTZ analyses. Sample preparation methods were also developed for plasma and urine, followed by extensive quantitative validation in accordance with international bioanalytical method recommendations, which include selectivity, linearity, qualitative and quantitative matrix effect, trueness, precision and the establishment of accuracy profiles using ß-expectation tolerance intervals for known and newer analytes. The newly optimized methods have been applied in a subsequent Phase Ib clinical trial conducted in our University Hospital with healthy subjects. H2PBTZ was found to be the most abundant species circulating in plasma, underscoring the importance of measuring accurately and precisely this unprecedented metabolite. Low concentrations were found in urine for all monitored analytes, suggesting extensive metabolism before renal excretion.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Humanos , Camundongos , Cromatografia Líquida/métodos , Mamíferos , Piperazinas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto
19.
Microorganisms ; 10(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557586

RESUMO

Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.

20.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430162

RESUMO

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), one of the most life-threatening communicable diseases, which causes 10 million new cases each year and results in an estimated 1 [...].


Assuntos
Doenças Transmissíveis , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA