Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 100(6): 1017-1024, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34233091

RESUMO

A series of biheterocyclic assemblies comprising of 1,2,5-oxadiazole and azasydnone scaffolds were synthesized and biologically evaluated as novel nitric oxide (NO)-donor and antiplatelet agents. Depending on functional substituents at the biheterocyclic core, all studied compounds demonstrated good NO-donor profiles releasing NO in a wide range of concentrations (19.2%-195.1%) according to a Griess assay. (1,2,5-Oxadiazolyl)azasydnones showed excellent antiplatelet activity in the case of ADP and adrenaline used as inducers completely suppressing the aggregate formation even at the lowest test concentration of 0.0375 µmol/ml, which is a rather unique feature. Moreover, studied biheterocycles possess a selective mechanism of inhibition of platelet aggregation mediated only by ADP and adrenaline, which are considered to be the main inducers causing thrombus formation. In addition, (1,2,5-oxadiazolyl)azasydnones were found to be completely non-toxic to hybrid endothelial cells EaHy 926. Studies of hydrolytic degradation of the synthesized compounds afforded benzoic acid as a sole detectable decomposition product, which is considered advantageous in drug design. Therefore, (1,2,5-oxadiazolyl)azasydnones represent a novel class of promising drug candidates with improved antiplatelet profile and reduced toxicity enabling their huge potential in medicinal chemistry and drug design.


Assuntos
Células Endoteliais , Inibidores da Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Epinefrina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Oxidiazóis , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Compostos Aza
2.
Chemistry ; 27(59): 14628-14637, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34324750

RESUMO

A series of novel energetic materials comprising of azo-bridged furoxanylazoles enriched with energetic functionalities was designed and synthesized. These high-energy materials were thoroughly characterized by IR and multinuclear NMR (1 H, 13 C, 14 N) spectroscopy, high-resolution mass spectrometry, elemental analysis, and differential scanning calorimetry (DSC). The molecular structures of representative amino and azo oxadiazole assemblies were additionally confirmed by single-crystal X-ray diffraction and X-ray powder diffraction. A comparison of contributions of explosophoric moieties into the density of energetic materials revealed that furoxan and 1,2,4-oxadiazole rings are the densest motifs while the substitution of the azide and amino fragments on the nitro and azo ones leads to an increase of the density. Azo bridged energetic materials have high nitrogen-oxygen contents (68.8-76.9 %) and high thermal stability. The synthesized compounds exhibit good experimental densities (1.62-1.88 g cm-3 ), very high enthalpies of formation (846-1720 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.66-9.09 km s-1 and detonation pressures 25.0-37.7 GPa). From the application perspective, the detonation parameters of azo oxadiazole assemblies exceed those of the benchmark explosive RDX, while a combination of high detonation performance and acceptable friction sensitivity of azo(1,2,4-triazolylfuroxan) make it a promising potential alternative to PETN.

3.
J Phys Chem A ; 125(18): 3920-3927, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33909974

RESUMO

Using quantum chemical methods and the original technique based on atom-atom potential methods, the molecular and crystal structure simulation of all possible structural forms of nitrodiaziridines were carried out. The possible pathways of thermal decomposition of nitrodiaziridines were modeled, and the most stable forms were identified. Thermodynamic stability, physicochemical characteristics, and detonation properties were also estimated. The obtained results enable a huge potential of the nitrodiaziridine-based compounds as high-energy materials for a variety of applications.

4.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322001

RESUMO

In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4'-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3'-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.


Assuntos
Substâncias Explosivas/química , Oxidiazóis/química , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Técnicas de Química Sintética , Isomerismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nitrocompostos/síntese química , Nitrocompostos/química , Oxidiazóis/síntese química , Transição de Fase , Termodinâmica
5.
J Org Chem ; 85(23): 15466-15475, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185453

RESUMO

A straightforward synthesis of a series of previously unknown N-(1,2,5-oxadiazolyl)hydrazones through the diazotization/reduction/condensation cascade of amino-1,2,5-oxadiazoles was accomplished. The described protocol was suitable for a wide array of target hydrazones, which were prepared in good to high yields under smooth reaction conditions with very good functional group tolerance. Importantly, the presented approach unveils a direct route to in situ generation of previously inaccessible (1,2,5-oxadiazolyl)hydrazines. In addition, a first example of the ionic structure incorporating a protonated hydrazone motif linked to the 1,2,5-oxadiazole 2-oxide subunit was synthesized, indicating the stability of prepared compounds toward acid-promoted hydrolysis. Overall, this method provides a direct access to the isosteric analogues of drug candidates for treatment of various neglected diseases, thus enabling their potential application in medicinal chemistry and drug design.

6.
Phys Chem Chem Phys ; 22(39): 22477-22492, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32996973

RESUMO

The equilibrium geometry of the boat conformation (Cs point group symmetry) of the 6-methyl-1,5-diazabicyclo[3.1.0]hexane (MDABH) molecule, absolutely dominating under normal conditions, was studied by the gas-phase electron diffraction (GED) method at 20 °C with the involvement of NMR, IR, and Raman spectroscopic data and quantum chemical calculations. The potential function of ring-puckering deformation for the MDABH bicyclic system was calculated at the MP2/aug-cc-pVTZ and B3LYP/cc-pVTZ levels. It was found by MP2 calculation that the total energy of the boat conformation is 3.52 kcal mol-1 lower than that of the chair conformation. For the first time, we recorded the IR and Raman spectra for liquid samples of MDABH and assigned their peculiarities only to boat conformation vibrations using the Pulay technique of scaling quantum chemical force fields. In the case of the chair form, transferability of the refined scale factors was used for reliable prediction of the location of its fundamental frequencies. According to the joint structural analysis of the above data, the most important equilibrium geometric re-parameters for the boat conformation of the MDABH molecule were determined to be (bond lengths in Å; angles in degrees, Cs symmetry): C2N1 = 1.466(2), C2C3 = 1.523(2), N1N5 = 1.512(2), C6N1 = 1.440(2), C6C7 = 1.487(2), ∠C2N1N5 = 106.1(2), ∠N1C2C3) = 110.2(4), ∠C2C3C4 = 99.9(4), ∠N1N5C6 = 58.3(1), ∠N1C6N5 = 63.3(1), ∠N1C6C7 = 114.9(6), ∠C6N1C2 = 111.8(1), ∠N5N1C2C3 = 17.3(1), ∠N1C2C3C4 = -26.8(2), θ = C2C3C4/C2N1N5C4 = -26.2(3), φ = N1C6N5/C2N1N5C4 = 74.0(1). Comparison of these and earlier results showed that the NN bond length in the diaziridine ring is very weakly dependent on the cis- or trans-arrangement of substituents at the nitrogen atoms.

7.
Chemistry ; 25(63): 14284-14289, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31508851

RESUMO

A novel one-pot cascade method for the assembly of valuable NO-donor azasydnone scaffold has been developed. The construction strategy involves a diazotization/azo coupling/elimination/double rearrangement cascade sequence of readily available amines. The current protocol enables the generation of a diverse array of azasydnones, including previously hardly accessible heteroaryl substituted azasydnones (25 examples, 70-97 % yield) with a good functional group tolerance under very mild conditions. Preliminary NO-releasing studies revealed an ability of azasydnones to produce NO in a wide range of concentrations. This method provides a new approach to nitrogen-oxygen heterocycles with potential applications in medicine and material science.

8.
Phys Chem Chem Phys ; 21(10): 5598-5613, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785435

RESUMO

For the first time, we applied a gas-phase electron diffraction (GED) method together with vibrational spectroscopy and quantum chemical calculations to investigate the equilibrium geometries of achiral meso and enantiomeric diastereomers of tetramezine [1,2-bis-(3,3-dimethyldiaziridin-1-yl)ethane] and their ratio in the mixture. In the joint structural analysis of these data, a new approach based on PES parameters is used in the framework of a static molecular model (small amplitude motion approximation). The agreement between the theoretical and experimental molecular intensities is characterized by a divergence factor Rf of 5.9%. The experimental re-parameters of tetramezine diastereomers agreed with our B3LYP/cc-pVTZ and MP2/cc-pVTZ calculations, which predicted the total energy of the meso form (Ci point group symmetry) to be lower than that of the enantiomeric form (C2 point group symmetry), by 6.4 and 4.7 kJ mol-1, respectively. The experimentally measured percentages of the meso and both enantiomeric diastereoisomers at 360 K were 70% and 30%, respectively. We characterized the meso form using 2D NMR spectra. Our GED data are in good agreement with the X-ray diffraction analysis of the meso form. This result reflects the weak effect of intermolecular interactions in the crystal. We assigned the IR spectrum bands of the crystalline meso form using the Pulay technique of scaling quantum chemical force fields. In the case of the enantiomeric form calculated at the same level, transferability of the refined scale factors was used for more reliable prediction of the mutual location and interpretation of its fundamental frequencies.

9.
Chemistry ; 25(16): 4225-4233, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644611

RESUMO

A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1 H, 13 C, 14 N, 15 N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57-1.71 g cm-3 ), very high enthalpies of formation (818-1363 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.54-8.26 kms-1 and detonation pressures 23.4-29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5-2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0-70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.

10.
Angew Chem Int Ed Engl ; 57(32): 10338-10342, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29936708

RESUMO

The first example of (3+3)-annulation of two different three-membered rings is reported herein. Donor-acceptor cyclopropanes in reaction with diaziridines were found to afford perhydropyridazine derivatives in high yields and diastereoselectivity under mild Lewis acid catalysis. The disclosed reaction is applicable for the broad substrate scope and exhibits an excellent functional group tolerance.

11.
ChemSusChem ; 10(20): 3914-3946, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28682509

RESUMO

A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous.


Assuntos
Química Verde/métodos , Líquidos Iônicos/química , Compostos Orgânicos/síntese química , Compostos Orgânicos/química
12.
ChemMedChem ; 12(9): 622-638, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28371340

RESUMO

The molecular hybridization of different compounds with known pharmacological activity is a particularly prominent approach for the design of potential drugs with improved pharmacokinetic profiles. Much attention over the last decade has been focused on the synthesis of hybrid structures with a nitric oxide (NO)-donor framework, as NO is a ubiquitous and crucial regulator of cellular metabolism, affecting various physiological and pathophysiological processes. 1,2,5-Oxadiazole 2-oxides (furoxans), which are capable of exogenous NO release in the presence of thiol cofactors, are an important class of prospective NO donors. As such, a wide range of hybrid compounds that combine a furoxan ring with various pharmacologically active structures have been created. This review focuses on recent results in the synthesis and pharmacological activity of furoxan-based hybrids. Special attention is given to chemo- and regioselective methods used in the preparation of these hybrid structures, and the role of synergistic effects on their pharmacological activity, associated with the furoxan fragment.


Assuntos
Doadores de Óxido Nítrico/química , Oxidiazóis/química , Pró-Fármacos/química , Doadores de Óxido Nítrico/farmacocinética , Doadores de Óxido Nítrico/farmacologia , Pró-Fármacos/farmacologia
13.
Chempluschem ; 82(11): 1315-1319, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31957187

RESUMO

The design of novel energetic materials with improved performance, optimized parameters, and environmental compatibility remains a challenging task. In this study, new high-energy materials based on isomeric dinitrobi-1,2,5-oxadiazole structures comprising nitrofurazan and nitrofuroxan subunits were synthesized. Due to planarity and strong noncovalent interactions, these materials display high density values as determined by single-crystal X-ray diffraction. The thermal, impact, and friction sensitivities of both isomers are similar to that of nitroesters. Their high detonation performance along with the combined benefits of high density, high heat of formation, and good oxygen balance make the synthesized compounds promising as explosives and highly-energetic oxidizers.

14.
Beilstein J Org Chem ; 12: 2240-2249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144290

RESUMO

An effective and highly regio- and diastereoselective one-pot method for the synthesis of new polynuclear dispiroheterocyclic systems with five stereogenic centers (dispiro[imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-6,3'-pyrrolidine-2',3''-indoles]) comprising pyrrolidinyloxindole and imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine moieties has been developed. The method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from isatin derivatives and sarcosine to 6-benzylideneimidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-2,7-diones.

15.
J Phys Chem A ; 119(44): 10871-81, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26461037

RESUMO

Gas-phase structures of two isomers of dimethyl-substituted 1,5-diazabicyclo[3.1.0]hexanes, namely, 3,3-dimethyl- and 6,6-dimethyl-1,5-diazabicyclo[3.1.0]hexane molecules, have been determined by gas electron diffraction method. A new approach based on the Monte Carlo method has been developed and used for the analysis of precision and accuracy of the refined structures. It was found that at 57 °C 3,3-dimethyl derivative exists as a mixture of chair and boat conformers with abundances 68(8)% and 32(8)%, respectively. 6,6-Dimethyl-1,5-diazabicyclo[3.1.0]hexane at 50 °C has only one stable conformation with planar 5-ring within error limits. Theoretical calculations predict that the 6,6-dimethyl isomer is more stable in comparison to the 3,3-dimethyl isomer with energy difference 3-5 kcal mol(-1). In order to explain the relative stability and bonding properties of different structures the natural bond orbitals (NBO), atoms in molecules (AIM), and interacting quantum atoms (IQA) analyses were performed.

16.
J Phys Chem A ; 112(23): 5243-50, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18491847

RESUMO

The equilibrium molecular structure and conformation of 1,5-diazabicyclo[3.1.0]hexane (DABH) has been studied by the gas-phase electron-diffraction method at 20 degrees C and quantum-chemical calculations. Three possible conformations of DABH were considered: boat, chair, and twist. According to the experimental and theoretical results, DABH exists exclusively as a boat conformation of C s symmetry at the temperature of the experiment. The MP2 calculations predict the stable chair and twist conformations to be 3.8 and 49.5 kcal mol(-1) above the boat form, respectively. The most important semi-experimental geometrical parameters of DABH (r(e), A and angle)e), deg) are (N1-N5) = 1.506(13), (N1-C6) = 1.442(2), (N1-C2) = 1.469(4), (C2-C3) = 1.524(7), (C6-N1-C2) = 114.8(8), (N5-N1-C2) = 107.7(4), (N1-C2-C3) = 106.5(9), and (C2-C3-C4) = 104.0(10). The natural bond orbital (NBO) analysis has shown that the most important stabilization factor in the boat conformation is the n(N) --> sigma*(C-C) anomeric effect. The geometry calculations and NBO analysis have been performed also for the bicyclohexane molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA