Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Clin Invest ; 134(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488007

RESUMO

The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Sistema Linfático
2.
Vasc Biol ; 6(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051669

RESUMO

Endothelial cells (ECs) of blood and lymphatic vessels have distinct identity markers that define their specialized functions. Recently, hybrid vasculatures with both blood and lymphatic vessel-specific features have been discovered in multiple tissues. Here, we identify the penile cavernous sinusoidal vessels (pc-Ss) as a new hybrid vascular bed expressing key lymphatic EC identity genes Prox1, Vegfr3,and Lyve1. Using single-cell transcriptome data of human corpus cavernosum tissue, we found heterogeneity within pc-S endothelia and observed distinct transcriptional alterations related to inflammatory processes in hybrid ECs in erectile dysfunction associated with diabetes. Molecular, ultrastructural, and functional studies further established hybrid identity of pc-Ss in mouse, and revealed their morphological adaptations and ability to perform lymphatic-like function in draining high-molecular-weight tracers. Interestingly, we found that inhibition of the key lymphangiogenic growth factor VEGF-C did not block the development of pc-Ss in mice, distinguishing them from other lymphatic and hybrid vessels analyzed so far. Our findings provide a detailed molecular characterization of hybrid pc-Ss and pave the way for the identification of molecular targets for therapies in conditions of dysregulated penile vasculature, including erectile dysfunction.

3.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776854

RESUMO

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Assuntos
Aracnoide-Máter , Meninges , Camundongos , Animais , Aracnoide-Máter/anatomia & histologia , Pia-Máter , Plexo Corióideo , Encéfalo
4.
Front Physiol ; 14: 1099403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814475

RESUMO

Enhancing our understanding of lymphatic anatomy from the microscopic to the anatomical scale is essential to discern how the structure and function of the lymphatic system interacts with different tissues and organs within the body and contributes to health and disease. The knowledge of molecular aspects of the lymphatic network is fundamental to understand the mechanisms of disease progression and prevention. Recent advances in mapping components of the lymphatic system using state of the art single cell technologies, the identification of novel biomarkers, new clinical imaging efforts, and computational tools which attempt to identify connections between these diverse technologies hold the potential to catalyze new strategies to address lymphatic diseases such as lymphedema and lipedema. This manuscript summarizes current knowledge of the lymphatic system and identifies prevailing challenges and opportunities to advance the field of lymphatic research as discussed by the experts in the workshop.

5.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688917

RESUMO

Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.


Assuntos
Células Endoteliais , Vasos Linfáticos , Camundongos , Animais , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Quimiocina CCL2 , Capilares
6.
Haematologica ; 108(3): 772-784, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638551

RESUMO

Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.


Assuntos
Doenças Vasculares , Corpos de Weibel-Palade , Humanos , Fator de von Willebrand/genética , Células Endoteliais/fisiologia , Angiopoietina-2/genética , Exocitose/fisiologia , Hemostasia , Junções Intercelulares
7.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961777

RESUMO

The developmental origins of lymphatic endothelial cells (LECs) have been under intense research after a century-long debate. Although previously thought to be of solely venous endothelial origin, additional sources of LECs were recently identified in multiple tissues in mice. Here, we investigated the regional differences in the origin(s) of the dermal lymphatic vasculature by lineage tracing using the pan-endothelial Cdh5-CreER T2 line. Tamoxifen-induced labeling of blood ECs at E9.5, before initiation of lymphatic development, traced most of the dermal LECs but with lower efficiency in the lumbar compared with the cervical skin. By contrast, when used at E9.5 but not at E11.5, 4-hydroxytamoxifen, the active metabolite of tamoxifen that provides a tighter window of Cre activity, revealed low labeling frequency of LECs, and lymphvasculogenic clusters in the lumbar skin in particular. Temporally restricted lineage tracing thus reveals contribution of LECs of Cdh5-lineage-independent origin to dermal lymphatic vasculature. Our results further highlight Cre induction strategy as a critical parameter in defining the temporal window for stage-specific lineage tracing during early developmental stages of rapid tissue differentiation.


Assuntos
Células Endoteliais , Vasos Linfáticos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Camundongos , Pele/metabolismo , Tamoxifeno/farmacologia
8.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763346

RESUMO

Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C-induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C-induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.


Assuntos
Linfangiogênese , Linfedema , Animais , Células Endoteliais/metabolismo , Humanos , Linfangiogênese/fisiologia , Linfedema/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptores de TIE/metabolismo , Ribonuclease Pancreático/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35452595

RESUMO

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Pericitos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/complicações , Doenças Cardiovasculares/virologia , Células Endoteliais , Camundongos , Pericitos/metabolismo , SARS-CoV-2
10.
11.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015735

RESUMO

Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss-of-function mutations in RASA1 or EPHB4 genes, which encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4). However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell-specific (EC-specific) disruption of Ephb4 in mice resulted in accumulation of collagen IV in the EC ER, leading to EC apoptotic death and defective developmental, neonatal, and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice could be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4-mutant mice that expressed a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity showed normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications for possible means of treatment of this disease.


Assuntos
Colágeno Tipo IV/metabolismo , DNA/genética , Células Endoteliais/patologia , Mutação , Neovascularização Patológica/genética , Receptor EphB4/genética , Malformações Vasculares/genética , Animais , Células Cultivadas , Análise Mutacional de DNA , Células Endoteliais/metabolismo , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptor EphB4/metabolismo , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia , Proteína p120 Ativadora de GTPase/deficiência
12.
Genesis ; 59(7-8): e23439, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34338433

RESUMO

Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2 -mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.


Assuntos
Claudinas/genética , Marcação de Genes/métodos , Vasos Linfáticos/metabolismo , Animais , Claudinas/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transgenes
13.
Trends Mol Med ; 27(10): 955-970, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332911

RESUMO

The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development.


Assuntos
Linfangiogênese , Vasos Linfáticos , Homeostase , Humanos , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia
14.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403370

RESUMO

Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.


Assuntos
Efrina-B2/genética , Receptor EphB4/genética , Receptor EphB4/metabolismo , Válvulas Venosas/anormalidades , Válvulas Venosas/embriologia , Animais , Aorta/ultraestrutura , Comunicação Celular , Polaridade Celular , Proliferação de Células , Conexina 43/metabolismo , Conexinas/metabolismo , Endotélio , Efrina-B2/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Ultrassonografia , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/genética , Insuficiência Venosa/diagnóstico por imagem , Válvulas Venosas/diagnóstico por imagem , Proteína alfa-4 de Junções Comunicantes
15.
Circ Res ; 129(1): 136-154, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166072

RESUMO

Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.


Assuntos
Linfangiogênese , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Vasos Linfáticos/anormalidades , Mutação , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Anormalidades Linfáticas/metabolismo , Anormalidades Linfáticas/patologia , Vasos Linfáticos/metabolismo , Fenótipo , Transdução de Sinais
16.
EMBO J ; 40(12): e107192, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33934370

RESUMO

The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.


Assuntos
Fatores de Transcrição Forkhead/genética , Linfangiogênese , Vasos Linfáticos , Proteínas Repressoras/genética , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Morfogênese , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Repressoras/metabolismo , Estresse Mecânico
17.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988714

RESUMO

Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and ß1 integrin-dependent manner. In vivo, loss of ß1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.


Assuntos
Movimento Celular/fisiologia , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Regulação para Cima/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Membrana Basal/metabolismo , Membrana Basal/fisiopatologia , Células Dendríticas/fisiologia , Células Endoteliais/fisiologia , Feminino , Humanos , Inflamação/fisiopatologia , Integrina beta1/metabolismo , Linfonodos/fisiopatologia , Vasos Linfáticos/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/metabolismo , Pele/metabolismo , Pele/fisiopatologia , Ativação Transcricional/fisiologia
18.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897857

RESUMO

Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function.


Lymph vessels are thin walled tubes that, similar to blood vessels, carry white blood cells, fluids and waste. Unlike veins and arteries, however, lymph vessels do not carry red blood cells and their main function is to remove excess fluid from tissues. The cells that line vessels in the body are called endothelial cells, and they are tightly linked together by proteins to control what goes into and comes out of the vessels. The chemical, physical and mechanical signals that control the junctions between endothelial cells are often the same in different vessel types, but their effects can vary. The endothelial cells of both blood and lymph vessels have two interacting proteins on their membrane known as EphrinB2 and its receptor, EphB4. When these two proteins interact, the EphB4 receptor becomes activated, which leads to changes in the junctions that link endothelial cells together. Frye et al. examined the role of EphrinB2 and EphB4 in the lymphatic system of mice. When either EphrinB2 or EphB4 are genetically removed in newborn or adult mice, lymph vessels become disrupted, but no significant effect is observed on blood vessels. The reason for the different responses in blood and lymph vessels is unknown. The results further showed that lymphatic endothelial cells need EphB4 and EphrinB2 to be constantly interacting to maintain the integrity of the lymph vessels. Further examination of human endothelial cells grown in the laboratory revealed that this constant signalling controls the internal protein scaffold that determines a cell's shape and integrity. Changes in the internal scaffold affect the organization of the junctions that link neighboring lymphatic endothelial cells together. The loss of signalling between EphrinB2 and EphB4 in lymph vessels reflects the increase in vessel leakage seen in response to bacterial infections and in some genetic conditions such as lymphoedema. Finding ways to control the signalling between these two proteins could help treat these conditions by developing drugs that improve endothelial cell integrity in lymph vessels.


Assuntos
Células Endoteliais/metabolismo , Efrina-B2/genética , Homeostase , Junções Intercelulares/metabolismo , Vasos Linfáticos/fisiologia , Receptor EphB4/genética , Transdução de Sinais , Animais , Claudina-5/genética , Efrina-B2/metabolismo , Deleção de Genes , Camundongos , Receptor EphB4/metabolismo
19.
Nat Commun ; 11(1): 2869, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513927

RESUMO

Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways.


Assuntos
Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Vasos Linfáticos/anormalidades , Mutação/genética , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular , Criança , Células Endoteliais/metabolismo , Ativação Enzimática , Feminino , Humanos , Vasos Linfáticos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA