Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1406531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39398330

RESUMO

Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.


Assuntos
Metabolismo Energético , Humanos , Animais , Metabolismo Energético/fisiologia , Hormônios Peptídicos/metabolismo , Reprodução/fisiologia , Doenças Metabólicas/metabolismo
2.
Discov Oncol ; 15(1): 573, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425872

RESUMO

Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.

3.
PeerJ ; 12: e18043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314843

RESUMO

Evidence on serum biomarkers as a non-invasive tool to detect colorectal adenoma (CRA) in the general population is quite promising. However, the sensitivity and specificity of these serum biomarkers in detecting disease are still questionable. This study aimed to systematically review the evidence on the diagnostic performance of serum biomarkers associated with CRA. Database searches on PubMed, Scopus, and WoS from January 2014 to December 2023 using PRISMA guidelines resulted in 4,380 citations, nine of which met inclusion criteria. The quality of these studies was assessed using the QUADOMICS tool. These studies reported on 77 individual/panel biomarkers which were further analysed to find associated altered pathways using MetaboAnlyst 5.0. Diagnostic accuracy analysis of these biomarkers was conducted by constructing a receiver operating characteristic (ROC) curve using their reported sensitivity and specificity. This review identified six potential serum metabolite biomarkers with 0.7

Assuntos
Adenoma , Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Adenoma/sangue , Adenoma/diagnóstico , Biomarcadores Tumorais/sangue , Sensibilidade e Especificidade , Curva ROC
4.
Antioxidants (Basel) ; 13(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334700

RESUMO

Oxidative stress is a contributing factor that leads to the vascular complications of diabetes mellitus. Diabetic peripheral neuropathy (DPN) is one of the microvascular complications with rising concern as the disease progresses despite strict glucose control and monitoring. Thus, there is an ongoing need for an early intervention that is effective in halting or slowing the progression of DPN where antioxidants have been proposed as potential therapeutic agents. This systematic review aims to evaluate the existing evidence on the antioxidant effect in DPN and provide insight on the role of antioxidants in the progression of DPN in a rat model. A comprehensive literature search was conducted on Web of Science, EBSCOhost, and Scopus to identify the effects and role of antioxidants in DPN. Data extraction was performed and SYRCLE's risk of bias (RoB) tool was used for risk assessment. This systematic review was written following the PRISMA 2020 statements. From the literature search, 1268 articles were screened, and a total of 101 full-text articles were further screened before 33 were analyzed. These findings collectively suggest that antioxidants can play a crucial role in managing and potentially reversing the effects of diabetic neuropathy by targeting oxidative stress and improving nerve function.

5.
J Pharm Biomed Anal ; 247: 116243, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843612

RESUMO

Therapeutic drug monitoring of pegylated L-asparaginase (ASNase) ensures the drug effectiveness in childhood acute lymphoblastic leukaemia (ALL) patients. The biological drug property with variable immunogenic host clearance, and the prescription of its generic formulation urge the need for a reliable assay to ensure an optimal treatment and improve outcome. This study aimed to optimise an existing isocratic reversed-phase high performance liquid chromatography (RP-HPLC) method with an automated pre-column sample derivatisation and injection program, and a computational algorithm for measuring serum pegylated ASNase activity in children with ALL. Nath et al.'s method in 2009 was adopted and modified using a pegylated ASNase. A set of Microsoft Excel macros was developed for the serum drug activity computation. An Agilent InfinityLab LC Series 1260 Infinity II Quaternary System with fluorescence detection was employed with an Agilent Poroshell 120 EC-C18 4.6×100 mm, 2.7 µm analytical column. System flow rate was optimised to 2.0 mL/min with 40×10-6/bar pump compressibility. The O-phthaldialdehyde (OPA) solution composition was optimised to 1 % o-phthaldialdehyde, 0.8 % 2-mercaptoethanol, 7.13 % methanol, and 1.81 % sodium tetraborate. The pre-column derivatisation program mixed 0.1 µL sample with 25 µL OPA solution before the automated injection. Method validation was according to the ICH guidelines. Total analysis time was 15 min, with L-aspartic acid eluted at 0.96 min and internal standard at 4.7 min. The calibration curves showed excellent linearity (R ≥0.9999). Interday precision for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 4.15 %, 3.05 %, and 3.09 % (n = 6). Mean %error for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 0.90±4.41 %, -1.37±3.04 %, and -3.03±3.02 % (n = 6). Limit of quantitation was 0.03 IU/mL. Majority of the patients' serum drug activity fell within the assay calibration range. Our improved method is automated, having shorter analysis time with a well-maintained separation resolution that enables a high-throughput analysis for application.


Assuntos
Asparaginase , Monitoramento de Medicamentos , Polietilenoglicóis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginase/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Criança , Polietilenoglicóis/química , Monitoramento de Medicamentos/métodos , Antineoplásicos/sangue , Reprodutibilidade dos Testes , Cromatografia de Fase Reversa/métodos , Calibragem
6.
Front Pharmacol ; 14: 1290721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146461

RESUMO

Musculoskeletal health is paramount in an ageing population susceptible to conditions such as osteoporosis, arthritis and fractures. Age-related changes in bone, muscle, and joint function result in declining musculoskeletal health, reduced mobility, increased risk of falls, and persistent discomfort. Preserving musculoskeletal wellbeing is essential for maintaining independence and enhancing the overall quality of life for the elderly. The global burden of musculoskeletal disorders is significant, impacting 1.71 billion individuals worldwide, with age-related muscle atrophy being a well-established phenomenon. Tocotrienols, a unique type of vitamin E found in various sources, demonstrate exceptional antioxidant capabilities compared to tocopherols. This characteristic positions them as promising candidates for addressing musculoskeletal challenges, particularly in mitigating inflammation and oxidative stress underlying musculoskeletal disorders. This review paper comprehensively examines existing research into the preventive and therapeutic potential of tocotrienols in addressing age-related musculoskeletal issues. It sheds light on the promising role of tocotrienols in enhancing musculoskeletal health and overall wellbeing, emphasizing their significance within the broader context of age-related health concerns.

7.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960173

RESUMO

(1) Background: Muscle loss is associated with frailty and a reduction in physical strength and performance, which is caused by increased oxidative stress. Ginger (Zingiber officinale Roscoe) is a potential herb that can be used to reduce the level of oxidative stress. This study aimed to determine the effect of ginger on the expression of metabolites and their metabolic pathways in the myoblast cells to elucidate the mechanism involved and its pharmacological properties in promoting myoblast differentiation. (2) Methods: The myoblast cells were cultured into three stages (young, pre-senescent and senescent). At each stage, the myoblasts were treated with different concentrations of ginger extract. Then, metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry (LCMS/MS). (3) Results: Nine metabolites were decreased in both the pre-senescent and senescent control groups as compared to the young control group. For the young ginger-treated group, 8-shogaol and valine were upregulated, whereas adipic acid and bis (4-ethyl benzylidene) sorbitol were decreased. In the pre-senescent ginger-treated group, the niacinamide was upregulated, while carnitine and creatine were downregulated. Ginger treatment in the senescent group caused a significant upregulation in 8-shogaol, octadecanamide and uracil. (4) Conclusions: Ginger extract has the potential as a pharmacological agent to reduce muscle loss in skeletal muscle by triggering changes in some metabolites and their pathways that could promote muscle regeneration in ageing.


Assuntos
Zingiber officinale , Humanos , Zingiber officinale/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Músculos , Mioblastos , Envelhecimento
8.
Malays J Med Sci ; 30(5): 40-51, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37928798

RESUMO

L-asparaginase is effective as part of the first line childhood acute lymphoblastic leukaemia (ALL) treatment regimen but suffers the risk of antibody production causing immune-mediated sequelae. This article aimed to describe the clinical implication of L-asparaginase hypersensitivity and review the types of antibodies and genetic polymorphisms contributing to it. Clinical or subclinical L-asparaginase hypersensitivity may lead to suboptimum therapeutic effect and jeopardise the clinical outcome in ALL children. Anti-asparaginase antibodies immunoglobulin (Ig)G, IgM and IgE were identified in the L-asparaginase hypersensitivities. Enzyme-linked immunosorbent assay (ELISA) is commonly used to quantify the IgG and IgM levels. The role of IgE in mediating L-asparaginase hypersensitivity is contradictory. Moreover, the presence of antibodies may not necessarily correlate inversely with the L-asparaginase efficacies in some studies. Patients with specific genetic variants have been shown to be more susceptible to clinical hypersensitivity of L-asparaginase. With the advance of technology, gene polymorphisms have been identified among Caucasians using whole-genome or exon sequencing, but the evidence is scanty among Asians. There is lack of pre-clinical study models that could help in understanding the pathophysiological pathway co-relating the gene expression and anti-asparaginase antibody formation. In conclusion, future research studies are required to fill the current gap in understanding the immune mediated reactions towards L-asparaginase upon its administration and its potential impact to the disease outcome.

9.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834115

RESUMO

Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.


Assuntos
Microbioma Gastrointestinal , Humanos , Disbiose , Envelhecimento
10.
Mar Drugs ; 21(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37755075

RESUMO

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic ß-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.

11.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569622

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 µg/kg, and (3) sham-operated rats treated with i.p. LPS 100 µg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.


Assuntos
Isquemia Encefálica , Delírio , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Masculino , Ratos , Delírio/etiologia , Tolerância à Endotoxina , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Lipopolissacarídeos/toxicidade , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569747

RESUMO

Research into ageing is focused on understanding why some people can maintain cognitive ability and others lose autonomy, affecting their quality of life. Studies have revealed that age-related neurodegenerative disorders like Alzheimer's disease (AD) are now major causes of death among the elderly, surpassing malignancy. This review examines the effects of vitamin E on transcriptomic changes in ageing and neurodegenerative diseases, using AD as an example, and how different transcriptome profiling techniques can shape the results. Despite mixed results from transcriptomic studies on AD patients' brains, we think advanced technologies could offer a more detailed and accurate tool for such analysis. Research has also demonstrated the role of antioxidant modifiers in preventing AD. This review will explore the key findings regarding AD and its modulation by vitamin E, emphasizing the shift in its epidemiology during the ageing process.

13.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570837

RESUMO

Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κß activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.


Assuntos
Diabetes Mellitus Tipo 2 , Moringa oleifera , Doenças Neurodegenerativas , Zingiber officinale , Humanos , Idoso , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Envelhecimento
14.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627546

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a significant public health issue owing to its high incidence and consequences, and its global prevalence is presently 30% and rising, necessitating immediate action. Given the current controversies related to NAFLD, the search for novel therapeutic interventions continues. Astaxanthin is a carotenoid that primarily originates from marine organisms. It is the best antioxidant among carotenoids and one of the most significant components in treating NAFLD. The use of astaxanthin, a xanthophyll carotenoid, as a dietary supplement to treat chronic metabolic diseases is becoming more evident. According to growing data, astaxanthin may be able to prevent or even reverse NAFLD by reducing oxidative stress, inflammation, insulin resistance, lipid metabolism, and fibrosis. Astaxanthin might become a viable therapeutic or treatment option for NAFLD in the upcoming years. Elucidating the impact and mechanism of astaxanthin on NAFLD would not only establish a scientific basis for its clinical application, but also potentially enhance the precision of experimental methodology for future investigations targeting NAFLD treatment. This review explores the potential preventive and therapeutic effects of astaxanthin on liver disorders, especially NAFLD.

15.
Nutrients ; 15(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447362

RESUMO

Multiple alcohol use disorder (AUD)-related behavioral alterations are governed by protein kinase C epsilon (PKCε), particularly in the amygdala. Protein kinase C (PKC) is readily phosphorylated at Ser729 before activation by the mTORC2 protein complex. In keeping with this, the current study was conducted to assess the variations in mTORC2 and PKCε during different ethanol exposure stages. The following groups of rats were employed: control, acute, chronic, ethanol withdrawal (EW), and EW + ethanol (EtOH). Ethanol-containing and non-ethanol-containing modified liquid diets (MLDs) were administered for 27 days. On day 28, either saline or ethanol (2.5 g/kg, 20% v/v) was intraperitoneally administered, followed by bilateral amygdala extraction. PKCε mRNA levels were noticeably increased in the amygdala of the EW + EtOH and EW groups. Following chronic ethanol consumption, the stress-activated map kinase-interacting protein 1 (Sin1) gene expression was markedly decreased. In the EW, EW + EtOH, and chronic ethanol groups, there was a profound increase in the protein expression of mTOR, Sin1, PKCε, and phosphorylated PKCε (Ser729). The PKCε gene and protein expressions showed a statistically significant moderate association, according to a correlation analysis. Our results suggest that an elevated PKCε protein expression in the amygdala during EW and EW + EtOH occurred at the transcriptional level. However, an elevation in the PKCε protein expression, but not its mRNA, after chronic ethanol intake warrants further investigation to fully understand the signaling pathways during different episodes of AUD.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Animais , Alcoolismo/metabolismo , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Roedores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Etanol , Tonsila do Cerebelo , Síndrome de Abstinência a Substâncias/metabolismo , RNA Mensageiro/metabolismo
16.
Nutrients ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299489

RESUMO

Sarcopenia is the progressive loss of muscle mass, strength, and functions as we age. The pathogenesis of sarcopenia is underlined by oxidative stress and inflammation. As such, it is reasonable to suggest that a natural compound with both antioxidant and anti-inflammatory activities could prevent sarcopenia. Curcumin, a natural compound derived from turmeric with both properties, could benefit muscle health. This review aims to summarise the therapeutic effects of curcumin on cellular, animal, and human studies. The available evidence found in the literature showed that curcumin prevents muscle degeneration by upregulating the expression of genes related to protein synthesis and suppressing genes related to muscle degradation. It also protects muscle health by maintaining satellite cell number and function, protecting the mitochondrial function of muscle cells, and suppressing inflammation and oxidative stress. However, it is noted that most studies are preclinical. Evidence from randomised control trials in humans is lacking. In conclusion, curcumin has the potential to be utilised to manage muscle wasting and injury, pending more evidence from carefully planned human clinical trials.


Assuntos
Curcumina , Sarcopenia , Animais , Humanos , Sarcopenia/etiologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Atrofia Muscular/metabolismo , Inflamação/metabolismo , Envelhecimento/fisiologia
17.
Nutrients ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299526

RESUMO

The Zingiberaceae family possess various phenolic compounds that have significant systemic bioactivities in the brain, including in age-related neurodegenerative diseases. Neurotrophins are growth factors that protect neurons from oxidative stress, and dysregulation of the neurotrophic system may result in neurocognitive disease. Phenolic compounds from the Zingiberaceae family have been used in traditional and complementary medicine (TCM) to improve cognitive functions. These compounds may affect the expression of neurotrophic agents, but their underlying molecular mechanisms require further investigation. Therefore, the goal of this review is to determine the expression and functional roles of phenolic compounds from the Zingiberaceae family in brain disorders and age-related neurodegenerative disorders. While previous studies have proposed various mechanisms for the neuroprotective activity of these compounds, their precise mechanism of action remains complex and poorly understood. Despite some promising findings, there are still shortcomings in the therapeutic use of these herbs, and current interventions involving the Zingiberaceae family appear to be clinically insufficient. This article aims to summarize recent discoveries of phenolic compounds from several Zingiberaceae family members and their use as neuroprotectants and provide the first review of evidence-linked neuroprotective activity of bioactive ingredients from prominent members of the Zingiberaceae family.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Zingiberaceae , Humanos , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Encefalopatias/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico
18.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111187

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease. Fucoxanthin, a red-orange marine carotenoid, is found in natural marine seaweeds with high antioxidant activity and several other remarkable biological features. The aim of this review is to gather evidence of the positive benefits of fucoxanthin on NAFLD. Fucoxanthin provides an extensive list of physiological and biological properties, such as hepatoprotective, anti-obesity, anti-tumor, and anti-diabetes properties, in addition to antioxidant and anti-inflammatory properties. This review focuses on published research on the preventative effects of fucoxanthin on NAFLD from the perspective of human clinical trials, animal experiments in vivo, and in vitro cell investigations. Using a variety of experimental designs, including treatment dosage, experiment model, and experimental periods, the positive effects of fucoxanthin were demonstrated. Fucoxanthin's biological activities were outlined, with an emphasis on its therapeutic efficacy in NAFLD. Fucoxanthin showed beneficial effects in modulating lipid metabolism, lipogenesis, fatty acid oxidation, adipogenesis, and oxidative stress on NAFLD. A deeper comprehension of NAFLD pathogenesis is essential for the development of novel and effective therapeutic strategies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Xantofilas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Carotenoides/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo
19.
J Hand Surg Glob Online ; 5(2): 196-200, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974291

RESUMO

Purpose: This study evaluated the clinical and biochemical safety profile of infiltration of lidocaine with adrenaline in wide-awake local anesthesia no tourniquet for distal radius plating. Methods: Twenty-four participants were randomly assigned to the therapeutic group (n = 19) (1% lidocaine in 1:100,000 adrenaline) and control group (n = 5) (2% lidocaine alone). Clinical parameters, including skin necrosis, duration of recovery of sensation, and lidocaine toxicity, were monitored. The serum lidocaine level was measured at different time intervals using a high-performance liquid chromatography reagent. Results: No lidocaine toxicity was recorded in any participant. The therapeutic group had a longer time for recovery of sensation. There was a significant difference in the serum lidocaine levels between both the groups at all time intervals up to 6 hours, with all participants exhibiting serum lidocaine levels below the mild toxicity level of 6.0 µg/mL. Conclusions: Lidocaine used within a safe recommended dose in wide-awake local anesthesia no tourniquet for distal radius plating is clinically and biochemically safe. Clinical relevance: Determining the clinical and biochemical safety profile of lidocaine with adrenaline in wide-awake local anesthesia no tourniquet can promote wider use of this technique.

20.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982655

RESUMO

Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.


Assuntos
Encefalopatias , Delírio , Humanos , Idoso , Triptofano/metabolismo , Cinurenina/metabolismo , Sistema Imunitário/metabolismo , Delírio/etiologia , Ácido Quinolínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA