Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
ChemMedChem ; : e202400018, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844420

RESUMO

The most effective anticancer drugs currently entail substantial and formidable side effects, and resistance of tumors to chemotherapeutic agents is a further challenge. Thus, the search for new anticancer drugs as well as novel therapeutic methods is still extremely important. Non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit COX (cyclooxygenase), overexpressed in some tumors. Carboranes are emerging as promising pharmacophores. We have therefore combined both moieties in a single molecule to design drugs with a dual mode of action and enhanced effectiveness. The NSAIDs ibuprofen, flurbiprofen, and fenoprofen were connected with 1,2-dicarba-closo-dodecaborane(12) via methylene, ethylene or propylene spacers. Three sets of carborane-NSAID conjugates were synthesized and analyzed through multinuclear (1H, 11B, and 13C) NMR spectroscopy. Conjugates with methylene spacers exhibited the most potent COX inhibition potential, particularly conjugates with flurbiprofen and fenoprofen, displaying higher selectivity towards COX-1. Furthermore, conjugates with methylene and ethylene spacers were more efficient in suppressing the growth of human cancer cell lines than their propylene counterparts. The carborane-flurbiprofen conjugate with an ethylene spacer was the most efficient and selective toward the COX-2-negative cell line HCT116. Its mode of action was basically cytostatic with minor contribution of apoptotic cell death and dominance of cells trapped in the division process.

2.
Diseases ; 12(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920557

RESUMO

Due to the rich ethnobotanical and growing evidence-based medicine records, the Alchemillae herba, i.e., the upper parts of the Lady's mantle (Alchemilla vulgaris L.), was used for the assessment of antimelanoma activity. The ethanolic extract of A. vulgaris strongly suppressed the viability of B16F1, B16F10, 518A2, and Fem-X cell lines. In contrast to the in vitro study, where the B16F1 cells were more sensitive to the treatment than the more aggressive counterpart B16F10, the results obtained in vivo using the corresponding syngeneic murine model were quite the opposite. The higher sensitivity of B16F10 tumors in vivo may be attributed to a more complex response to the extract compared to one triggered in vitro. In addition, the strong immunosuppressive microenvironment in the B16F1 model is impaired by the treatment, as evidenced by enhanced antigen-presenting potential of dendritic cells, influx and activity of CD4+ T and CD8+ T lymphocytes, decreased presence of T regulatory lymphocytes, and attenuation of anti-inflammatory cytokine production. All these effects are supported by the absence of systemic toxicity. A. vulgaris extract treatment results in a sustained and enhanced ability to reduce melanoma growth, followed by the restoration of innate and adopted antitumor immunity without affecting the overall physiology of the host.

3.
RSC Med Chem ; 15(6): 1921-1928, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911151

RESUMO

Raloxifene, a selective oestrogen receptor modulator (SERM), has demonstrated efficacy in the prevention and therapy of oestrogen receptor-positive (ER+) breast cancer, with some degree of effectiveness against triple-negative forms. This suggests the presence of oestrogen receptor-independent pathways in raloxifene-mediated anticancer activity. To enhance the potential of raloxifene against the most aggressive breast cancer cells, hybrid molecules combining the drug with a metal chelator moiety have been developed. In this study, we synthetically modified the structure of raloxifene by incorporating a 2,2'-bipyridine (2,2'-bipy) moiety, resulting in [6-methoxy-2-(4-hydroxyphenyl)benzo[b]thiophen-3-yl]-[4-(2,2'-bipyridin-4'-yl-methoxy)phenyl]methanone (bipyraloxifene). We investigated the cytotoxic activity of both raloxifene and bipyraloxifene against ER+ breast adenocarcinomas, glioblastomas, and a triple-negative breast cancer (TNBC) cell line, elucidating their mode of action against TNBC. Bipyraloxifene maintained a mechanism based on caspase-mediated apoptosis but exhibited significantly higher activity and selectivity compared to the original drug, particularly evident in triple-negative stem-like MDA-MB-231 cells.

4.
Biomolecules ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38672437

RESUMO

The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κP,κS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the "piano stool" type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Humanos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Irídio/química , Irídio/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Modelos Moleculares
5.
Dalton Trans ; 53(19): 8298-8314, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661529

RESUMO

Three newly synthesized triphenyltin(IV) compounds, Ph3SnL1 (L1- = 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoato), Ph3SnL2 (L2- = 2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato), and Ph3SnL3 (L3- = 2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato), were characterized by elemental microanalysis, FT-IR spectroscopy and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. A single X-ray diffraction study indicates that compounds Ph3SnL1 and Ph3SnL2 exhibit a 1D zig-zag chain polymeric structure, which in the case of Ph3SnL2 is additionally stabilized by π-interactions. In addition, the synthesized compounds were further examined using density functional theory and natural bond orbital analysis. The compounds have been evaluated for their in vitro anticancer activity against three human cell lines: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three murine cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the nanomolar range, indicating that these compounds possess better anticancer activity than cisplatin. The study of the effect of the newly developed drug Ph3SnL1 showed its plasticity in achieving an antitumor effect in vitro, which depends on the specificity of the phenotype and the redox status of the malignant cell line and ranges from the initiation of apoptotic cell death to the induction of differentiation to a more mature cell form. In the syngeneic model of murine melanoma, Ph3SnL1 showed the potential to reduce the tumor volume similar to cisplatin, but in a well-tolerated form and with low systemic toxicity, representing a significant advantage over the conventional drug.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Orgânicos de Estanho , Quinolonas , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Animais , Camundongos , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Estrutura Molecular , Relação Estrutura-Atividade , Sobrevivência Celular/efeitos dos fármacos
6.
ChemMedChem ; 19(14): e202400006, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642018

RESUMO

Triple-negative breast cancer (TNBC) poses challenges in therapy due to the absence of target expression such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Frequently, the treatment of TNBC involves the combination of several therapeutics. However, an enhanced therapeutic effect can be also achieved within a single molecule. The efficacy of raloxifene can be improved by designing a raloxifene-based hybrid drug bearing a 2,2'-bipyridine moiety (2). Integration of platinum(II), palladium(II), and nickel(II) complexes into this structure dramatically changed the cytotoxicity. The platinum(II) dichloride complex 3 did not demonstrate any activity, while palladium(II) and nickel(II) dichloride complexes 4 and 5 exhibited various cytotoxic behavior towards different types of hormone-receptor positive (HR+) cancer and TNBC cell lines. The replacement of the two chlorido ligands in 3-5 with a dicarbollide (carborate) ion [C2B9H11]2- resulted in reduced activity of compounds 6, 7, and 8. However, the palladacarborane complex 7 demonstrated higher selectivity towards TNBC. Furthermore, the mechanism of action was shifted from cytotoxic to explicitly cytostatic with detectable proliferation arrest and accelerated aging, characterized by senescence-associated phenotype of TNBC cells. This study provides valuable insights into the development of hybrid therapeutics against TNBC.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Níquel , Paládio , Platina , Cloridrato de Raloxifeno , Neoplasias de Mama Triplo Negativas , Humanos , Paládio/química , Paládio/farmacologia , Níquel/química , Níquel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Platina/química , Platina/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Proliferação de Células/efeitos dos fármacos , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Feminino
7.
J Med Chem ; 67(9): 7553-7568, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639401

RESUMO

FETPY, an organo-diiron(I) complex, showed strong cytotoxicity across a panel of human and mouse cancer cell lines, combined with an outstanding selectivity compared to nonmalignant cells. Enhanced iron uptake in aggressive, low-differentiated cell lines, caused membrane lipid peroxidation, which resulted in ferroptosis in human ovarian cancer cells. FETPY induced significant morphological changes in murine B16-F1 and B16-F10 melanoma cells, leading to senescence and/or trans-differentiation into Schwann-like cells, thus significantly reducing their tumorigenic potential. Additionally, FETPY substantially suppressed tumor growth in low- and high-grade syngeneic melanoma models when administered in a therapeutic regimen. FETPY is featured by satisfactory water solubility (millimolar range), an amphiphilic character (Log Pow = -0.17), and excellent stability in a biological medium (DMEM). These important requisites for drug development are rarely met in iron complexes investigated so far as possible anticancer agents. Overall, FETPY holds promise as a safe and potent targeted antitumor agent.


Assuntos
Antineoplásicos , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Ferro/química , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL
8.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543072

RESUMO

Ethnomedicinal records have long mentioned the historical usage of Alchemilla vulgaris L. in folk medicine, particularly for the treatment of gynecological issues. Building on this ethnomedicinal knowledge regarding female illnesses, the aim of this research was to evaluate the impact of ethanolic extract of A. vulgaris on mouse breast cancer cells (4T1) in vitro and in vivo, in addition to its effect on the immune compartment in the tumor microenvironment. Behind viability decrease of 4T1 cells induced by treatment with A. vulgaris extract was strong inhibition of cell proliferation accompanied by caspase-dependent apoptosis and autophagic cell death. Observed changes in 4T1 cell culture after treatment were well orchestrated and led to a reduction in metastatic potential through weakened adhesion, invasion, migration, and colony-forming abilities in vitro. Enhanced intracellular production of reactive oxygen and nitrogen species promoted by the treatment might interfere with all the observed effects. Apart from the direct effect on tumor cells, the A. vulgaris extract significantly reduced tumor growth in the solid orthotropic mammary carcinoma model through restitution of efficient local and systemic immune response reflected in enhanced antigen-presenting potential of dendritic cells (DCs) as well as the extent and activity of effector T cells.

9.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543158

RESUMO

A novel trimethyltin(IV) complex (Me3SnL), derived from 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoate ligand, has been synthesized and characterized by elemental microanalysis, UV/Vis spectrophotometry, FT-IR and multinuclear (1H, 13C and 119Sn) NMR spectroscopies. Furthermore, the structure of the ligand precursor HL was solved using SC-XRD (single-crystal X-ray diffraction). The prediction of UV/Vis and NMR spectra by quantum-chemical methods was performed and compared to experimental findings. The protein binding affinity of Me3SnL towards BSA was determined by spectrofluorometric titration and subsequent molecular docking simulations. Me3SnL has been evaluated for its in vitro anticancer activity against three human cell lines, MCF-7 (breast adenocarcinoma), A375 (melanoma) and HCT116 (colorectal carcinoma), and three mouse tumor cell lines, 4T1 (breast carcinoma), B16 (melanoma) and CT26 (colon carcinoma), using MTT and CV assays. The strong inhibition of A375 cell proliferation, ROS/RNS upregulation and robust lipid peroxidation lead to autophagic cell death upon treatment with Me3SnL.

10.
Mol Biol Rep ; 51(1): 218, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281240

RESUMO

BACKGROUND: Shikonin is a naturally occurring naphthoquinone found in the roots of several genera of the Boraginaceae family, widely known for its numerous biological activities, such as antiinflammatory, antioxidant, antimicrobial and anticancer. In this study, the antitumor effect of six naphthoquinones isolated from the roots of Onosma visianii was evaluated using two cell lines, mouse melanoma B16 and highly aggressive rat glioma cell line C6. METHODS AND RESULTS: All examined shikonins dose-dependently decreased the viability of tested cells, with compounds 5 and 6 being the most potent ones and hence subjected to further analysis. The diminished viability of B16 melanoma cells was in correlation with detected caspase-mediated apoptosis. Importantly, observed altered cell morphology along with the loss of dividing potential upon exposure to both shikonins implied reprogram of B16 cell phenotype. Elevated expression of myelin basic protein indicated the acquirement of Schwann-like cell phenotype, while detected autophagy might be connected to this phenomenon. On the contrary, upon exposure to both agents, C6 cells underwent specific cell death-anoikis, provoked by detachment from the extracellular matrix and compromised integrin signaling. Oppositely to compound 5, compound 6 realized anoikis in a caspase-independent manner and under sustained ERK1/2 activation, indicating the deviation from standard proanoikis signaling. CONCLUSIONS: Herein, we have pointed out the diversity and novelty in the mode of action of shikonin derivatives depending on the tumor cell features, which represents a good platform for new investigations of these promising natural compounds.


Assuntos
Boraginaceae , Naftoquinonas , Neoplasias , Ratos , Camundongos , Animais , Anoikis , Apoptose , Naftoquinonas/farmacologia , Diferenciação Celular , Caspases , Linhagem Celular Tumoral
11.
ChemMedChem ; 19(2): e202300506, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012078

RESUMO

Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Amidas/farmacologia , Aminas/farmacologia , Linhagem Celular Tumoral
12.
J Inorg Biochem ; 250: 112399, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890233

RESUMO

Three new diphenyltin(IV) complexes, bis(3-(4-methyl-2-oxoquinolinyl-1(2H)-yl)propanoato)diphenyltin(IV) (1), bis(2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (2), and bis(2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (3), were synthesized and characterized by elemental microanalysis, FT-IR spectroscopy, and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. Crystal structure of ligand precursor, 2-(4-methyl-2-oxoquinolinyl-1-(2H)-yl)acetic acid (HL2), has been determined by X-ray diffraction studies. Asymmetric bidentate coordination of the carboxylato ligands and skew trapezoidal structures are assumed for the synthesized complexes. In vitro anticancer activity of the synthesized diphenyltin(IV) complexes was evaluated against three human: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three mouse tumor cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the range from 0.1 to 3.7 µM. Flow cytometric analysis and fluorescent microscopy suggest that complex 1 induces caspase-dependent apoptosis followed with strong blockade of cell division in HCT116 cells. Since complex 1 showed ROS/RNS scavenging potential mentioned cytotoxicity was not connected with oxidative stress.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Melanoma , Humanos , Animais , Camundongos , Feminino , Antineoplásicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Linhagem Celular Tumoral
13.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38138321

RESUMO

The human body contains 60-70% water, depending on age. As a body fluid, it is not only a medium in which physical and chemical processes take place, but it is also one of the active mediators. Water is the richest substance with non-covalent hydrogen bonds. Water molecules, by themselves (in vacuum), are diamagnetic but when organized into clusters, they become diamagnetic or paramagnetic. Also, biomolecules (DNA, collagen, clathrin, and other proteins) have non-covalent hydrogen bonds in their structure. The interaction, as well as signal transmission, between water and biomolecules is achieved through the vibrations of covalent and non-covalent hydrogen bonds, which determine the state and dynamics of conformational changes in biomolecules. Disruptive conformational changes in biomolecules, cells, and tissues lead to their dysfunctionality, so they are a frequent cause of many disorders and diseases. For example, the rearrangement of hydrogen bonding due to mitochondrial disease mutation in cytochrome bc1 disturbs heme bH redox potential and spin state. In order to prevent and repair the dysfunctional conformational changes, a liquid substance was developed based on the second derivative of the C60 molecule (SD-C60), which has classical and quantum properties. The characterization of SD-C60 by UV-VIS-NIR, FTIR, TEM, and AFM/MFM was performed and it is shown that SD-C60 water layers generate vibrations with near-zero phase dispersion which are transmitted through Fibonacci's water chains to biomolecules. In comparison with previously published SD-C60 derivate (3HFWC, size until 10 nm, and 1-5 water layers), the improved formulation (3HFWC-W, size 10-25 nm, and 6-9 water layers) showed multiplied cytotoxic activity against melanoma cell lines of different aggressiveness. Apart from this, the mode of action was preserved and based on an induction of senescence rather than cell death. Importantly, high selectivity towards malignant phenotypes was detected. Observed effects can be ascribed to a machinery of hydrogen bonds, which are generated in SD-C60 and transmitted through water to biomolecules. This approach may open a new field in science and healthcare-a "water-based nanomedicine".

14.
RSC Med Chem ; 14(12): 2574-2582, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38099059

RESUMO

For decades, tamoxifen-based hormone therapy has effectively addressed oestrogen receptor positive (ER+) luminal A breast cancer. Nonetheless, the emergence of tamoxifen resistance required innovative approaches, leading to hybrid metallodrugs with several therapeutic effects besides the inhibition of oestrogen receptor α (ERα). Drawing inspiration from tamoxifen metabolite structures (4-hydroxytamoxifen and 4,4'-dihyroxytamoxifen), a phenyl ring was replaced by a bidentate 2,2'-bipyridine donor moiety to give 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (L), enabling coordination of bioactive transition metal compounds such as copper(ii) dichloride, yielding [CuCl(µ-Cl)(L-κ2N,N')]2 (1). Notably, copper(ii) complex 1 exhibited remarkable activity within the low micromolar concentration range against ER+ human glioblastoma U251, as well as breast carcinomas MDA-MB-361 and MCF-7, surpassing the efficacy of previously reported palladium(ii) and platinum(ii) dichloride analogs against these cell lines. The pronounced efficacy of complex 1 against triple-negative MDA-MB-231 cells highlights its potential multitherapeutic approach, evident through induction of apoptosis and antioxidant activity. This study evaluates the potential of copper-tamoxifen hybrid complex 1 as a potent therapeutic candidate, highlighting its diverse mechanism of action against challenging breast cancer subtypes.

15.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004447

RESUMO

The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa, DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480 cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly, co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However, a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition by the carborane derivatives emerges as a possible reason.

16.
Molecules ; 28(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299023

RESUMO

Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.


Assuntos
Boranos , Inibidores de Lipoxigenase , Humanos , Ciclo-Oxigenase 2 , Inibidores de Lipoxigenase/farmacologia
18.
ChemMedChem ; 18(14): e202300206, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37160667

RESUMO

The presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids. The di-tert-butylphenol derivative tebufelone represents a selective dual COX-2/5-LO inhibitor. The incorporation of meta- or para-carborane into the tebufelone scaffold resulted in eight carborane-based tebufelone analogs that show no COX inhibition but 5-LO inhibitory activity in vitro. Cell viability studies on HT29 colon adenocarcinoma cells revealed that the observed antiproliferative effect of the para-carborane analogs of tebufelone is enhanced by structural modifications that include chain elongation in combination with introduction of a methylene spacer resulting in higher anticancer activity compared to tebufelone. Hence, this strategy proved to be a promising approach to design potent 5-LO inhibitors with potential application as cytostatic agents.


Assuntos
Adenocarcinoma , Boranos , Neoplasias do Colo , Humanos , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/química , Microambiente Tumoral
19.
Pharmaceutics ; 15(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840003

RESUMO

The luminal A-subtype of breast cancer, where the oestrogen receptor α (ERα) is overexpressed, is the most frequent one. The prodrug tamoxifen (1) is the clinically used agent, inhibiting the ERα activity via the formation of several active metabolites, such as 4-hydroxytamoxifen (2) or 4,4'-dihydroxytamoxifen (3). In this study, we present the tamoxifen derivative 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (4), which was combined with platinum or palladium dichloride, the former a well-known scaffold in anticancer treatment, to give [PtCl2(4-κ2N,N')] (5) or [PdCl2(4-κ2N,N'] (6). To prevent fast exchange of weakly coordinating chlorido ligands in aqueous solution, a bulky, highly stable and hydrophobic nido-carborate(-2) ([C2B9H11]2-) was incorporated. The resulting complexes [3-(4-κ2N,N')-3,1,2-PtC2B9H11] (7) and [3-(4-κ2N,N')-3,1,2-PdC2B9H11] (8) exhibit a dramatic change in electronic and biological properties compared to 5 and 6. Thus, 8 is highly selective for triple-negative MDA-MB-231 cells (IC50 = 3.7 µM, MTT test), while 7 is completely inactive against this cell line. The observed cytotoxicity of compounds 4-6 and 8 against this triple-negative cell line suggests off-target mechanisms rather than only ERα inhibition, for which these compounds were originally designed. Spectroscopic properties and electronic structures of the metal complexes were investigated for possible explanations of the biological activities.

20.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770334

RESUMO

In our recent study, we showed that in vitro treatment of melanoma cells with hyperpolarized light (HPL) as well as with the second derivative of fullerene, hyper-harmonized hydroxylated fullerene water complex (3HFWC) reduced viability of cells by decreasing their proliferative capacity and inducing senescence and reprogramming towards a normal, melanocytic phenotype. Therefore, we wanted to determine whether these effects persisted in vivo in the syngeneic mouse melanoma model with a combined treatment of HPL irradiation and 3HFWC per os. Our results demonstrated the potent antitumor effects of 3HFWC nanosubstance assisted by HPL irradiation. These effects were primarily driven by the stimulation of melanoma cell growth arrest, the establishment of a senescent phenotype, and melanocytic differentiation on the one hand, and the awakening of the antitumor immune response on the other. In addition, the combined treatment reduced the protumorigenic activity of immune cells by depleting T regulatory cells, myeloid-derived suppressors, and M2 macrophages. The support of the 3HFWC substance by HPL irradiation may be the axis of the new approach design based on tumor cell reprogramming synchronized with the mobilization of the host's protective immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA