Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diagnostics (Basel) ; 14(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786288

RESUMO

Digital pathology continues to gain momentum, with the promise of artificial intelligence to aid diagnosis and for assessment of features which may impact prognosis and clinical management. Successful adoption of these technologies depends upon the quality of digitised whole-slide images (WSI); however, current quality control largely depends upon manual assessment, which is inefficient and subjective. We previously developed PathProfiler, an automated image quality assessment tool, and in this feasibility study we investigate its potential for incorporation into a diagnostic clinical pathology setting in real-time. A total of 1254 genitourinary WSI were analysed by PathProfiler. PathProfiler was developed and trained on prostate tissue and, of the prostate biopsy WSI, representing 46% of the WSI analysed, 4.5% were flagged as potentially being of suboptimal quality for diagnosis. All had concordant subjective issues, mainly focus-related, 54% severe enough to warrant remedial action which resulted in improved image quality. PathProfiler was less reliable in assessment of non-prostate surgical resection-type cases, on which it had not been trained. PathProfiler shows potential for incorporation into a digitised clinical pathology workflow, with opportunity for image quality improvement. Whilst its reliability in the current form appears greatest for assessment of prostate specimens, other specimen types, particularly biopsies, also showed benefit.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3063-3067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085678

RESUMO

Multiplexed immunofluorescence provides an un-precedented opportunity for studying specific cell-to-cell and cell microenvironment interactions. We employ graph neural networks to combine features obtained from tissue morphology with measurements of protein expression to profile the tumour microenvironment associated with different tumour stages. Our framework presents a new approach to analysing and processing these complex multi-dimensional datasets that overcomes some of the key challenges in analysing these data and opens up the opportunity to abstract biologically meaningful interactions.


Assuntos
Comunicação Celular , Redes Neurais de Computação , Coloração e Rotulagem , Microambiente Tumoral
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3522-3525, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086526

RESUMO

We present a multi-scale graphical network that can capture the relevant representations of individual cell morphology, topological structure of cell communities in a tissue image, as well as whole slide level attributes. This helps to effectively merge the disease relevant cell morphology to the overall topological context within the sample, within one unified deep framework. From the explainability point of view, instead of empirical design, the graphs are designed with biomedical considerations in mind in order to have translational validity. We also provide a clinically interpretable visualisation of the cells and their micro- and macro-environment by leveraging label noise reduction. We demonstrate the efficacy of our methodology on myeloproliferative neoplasms (MPN), a haematopoietic stem cell disorder as an exemplar test case. The proposed method achieves an encouraging performance in the robust separation of different MPN subtypes in this exciting new dataset as part of this work.

4.
Sci Rep ; 12(1): 5002, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322056

RESUMO

Research using whole slide images (WSIs) of histopathology slides has increased exponentially over recent years. Glass slides from retrospective cohorts, some with patient follow-up data are digitised for the development and validation of artificial intelligence (AI) tools. Such resources, therefore, become very important, with the need to ensure that their quality is of the standard necessary for downstream AI development. However, manual quality control of large cohorts of WSIs by visual assessment is unfeasible, and whilst quality control AI algorithms exist, these focus on bespoke aspects of image quality, e.g. focus, or use traditional machine-learning methods, which are unable to classify the range of potential image artefacts that should be considered. In this study, we have trained and validated a multi-task deep neural network to automate the process of quality control of a large retrospective cohort of prostate cases from which glass slides have been scanned several years after production, to determine both the usability of the images at the diagnostic level (considered in this study to be the minimal standard for research) and the common image artefacts present. Using a two-layer approach, quality overlays of WSIs were generated from a quality assessment (QA) undertaken at patch-level at [Formula: see text] magnification. From these quality overlays the slide-level quality scores were predicted and then compared to those generated by three specialist urological pathologists, with a Pearson correlation of 0.89 for overall 'usability' (at a diagnostic level), and 0.87 and 0.82 for focus and H&E staining quality scores respectively. To demonstrate its wider potential utility, we subsequently applied our QA pipeline to the TCGA prostate cancer cohort and to a colorectal cancer cohort, for comparison. Our model, designated as PathProfiler, indicates comparable predicted usability of images from the cohorts assessed (86-90% of WSIs predicted to be usable), and perhaps more significantly is able to predict WSIs that could benefit from an intervention such as re-scanning or re-staining for quality improvement. We have shown in this study that AI can be used to automate the process of quality control of large retrospective WSI cohorts to maximise their utility for research.


Assuntos
Inteligência Artificial , Interpretação de Imagem Assistida por Computador , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Redes Neurais de Computação , Estudos Retrospectivos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3592-3595, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892015

RESUMO

Image-based cell phenotyping is an important and open problem in computational pathology. The two principal challenges are: 1) making the cell cluster properties insensitive to experimental settings (like seed point and feature selection) and 2) ensuring that the phenotypes emerging are biologically relevant and support clinical reporting. To gauge robustness, we first compare the consistency of the phenotypes using self-supervised and supervised features. Through case classification, we analyse the relevance of the self-supervised and supervised feature sets with respect to the clinical diagnosis. In addition, we demonstrate how we can add model explainability through Shapley values to identify more disease relevant cellular phenotypes and measure their importance in context of the disease. Here, myeloproliferative neoplasms, a haematopoietic stem cell disorder, where one particular cell type is of diagnostic relevance is used as an exemplar. The experiments conducted on a set of bone marrow trephines demonstrate an improvement of 7.4 % in accuracy for case classification using cellular phenotypes derived from the supervised scenario.


Assuntos
Aprendizagem , Aprendizado de Máquina Supervisionado , Fenótipo
6.
Mod Pathol ; 34(9): 1780-1794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017063

RESUMO

The use of immunohistochemistry in the reporting of prostate biopsies is an important adjunct when the diagnosis is not definite on haematoxylin and eosin (H&E) morphology alone. The process is however inherently inefficient with delays while waiting for pathologist review to make the request and duplicated effort reviewing a case more than once. In this study, we aimed to capture the workflow implications of immunohistochemistry requests and demonstrate a novel artificial intelligence tool to identify cases in which immunohistochemistry (IHC) is required and generate an automated request. We conducted audits of the workflow for prostate biopsies in order to understand the potential implications of automated immunohistochemistry requesting and collected prospective cases to train a deep neural network algorithm to detect tissue regions that presented ambiguous morphology on whole slide images. These ambiguous foci were selected on the basis of the pathologist requesting immunohistochemistry to aid diagnosis. A gradient boosted trees classifier was then used to make a slide-level prediction based on the outputs of the neural network prediction. The algorithm was trained on annotations of 219 immunohistochemistry-requested and 80 control images, and tested by threefold cross-validation. Validation was conducted on a separate validation dataset of 222 images. Non IHC-requested cases were diagnosed in 17.9 min on average, while IHC-requested cases took 33.4 min over multiple reporting sessions. We estimated 11 min could be saved on average per case by automated IHC requesting, by removing duplication of effort. The tool attained 99% accuracy and 0.99 Area Under the Curve (AUC) on the test data. In the validation, the average agreement with pathologists was 0.81, with a mean AUC of 0.80. We demonstrate the proof-of-principle that an AI tool making automated immunohistochemistry requests could create a significantly leaner workflow and result in pathologist time savings.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Patologia Clínica/métodos , Neoplasias da Próstata/diagnóstico , Automação Laboratorial/métodos , Biópsia , Humanos , Masculino , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA