Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 14(1): 4328, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383841

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus has greatly affected global health. Emerging evidence suggests a complex interplay between Alzheimer's disease (AD), diabetes (DM), and COVID-19. Given COVID-19's involvement in the increased risk of other diseases, there is an urgent need to identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic acid receptors (LPARs), belonging to the G protein-coupled receptor family, have been implicated in various pathological conditions, including inflammation. In this regard, the study aimed to investigate the involvement of LPARs (specifically LPAR1, 3, 6) in the tri-directional relationship between AD, DM, and COVID-19 through network analysis, as well as explore the therapeutic potential of selected anti-AD, anti-DM drugs as LPAR, SPIKE antagonists. We used the Coremine Medical database to identify genes related to DM, AD, and COVID-19. Furthermore, STRING analysis was used to identify the interacting partners of LPAR1, LPAR3, and LPAR6. Additionally, a literature search revealed 78 drugs on the market or in clinical studies that were used for treating either AD or DM. We carried out docking analysis of these drugs against the LPAR1, LPAR3, and LPAR6. Furthermore, we modeled the LPAR1, LPAR3, and LPAR6 in a complex with the COVID-19 spike protein and performed a docking study of selected drugs with the LPAR-Spike complex. The analysis revealed 177 common genes implicated in AD, DM, and COVID-19. Protein-protein docking analysis demonstrated that LPAR (1,3 & 6) efficiently binds with the viral SPIKE protein, suggesting them as targets for viral infection. Furthermore, docking analysis of the anti-AD and anti-DM drugs against LPARs, SPIKE protein, and the LPARs-SPIKE complex revealed promising candidates, including lupron, neflamapimod, and nilotinib, stating the importance of drug repurposing in the drug discovery process. These drugs exhibited the ability to bind and inhibit the LPAR receptor activity and the SPIKE protein and interfere with LPAR-SPIKE protein interaction. Through a combined network and targeted-based therapeutic intervention approach, this study has identified several drugs that could be repurposed for treating COVID-19 due to their expected interference with LPAR(1, 3, and 6) and spike protein complexes. In addition, it can also be hypothesized that the co-administration of these identified drugs during COVID-19 infection may not only help mitigate the impact of the virus but also potentially contribute to the prevention or management of post-COVID complications related to AD and DM.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , Glicoproteína da Espícula de Coronavírus , Doença de Alzheimer/tratamento farmacológico , Pandemias , Diabetes Mellitus/tratamento farmacológico , Simulação de Acoplamento Molecular , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Nutrients ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145217

RESUMO

Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 µM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.


Assuntos
Hibiscus , Fenantrenos , Extratos Vegetais/farmacologia , Receptores de Esteroides , Antioxidantes/farmacologia , Receptor Constitutivo de Androstano , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Etanol , Células HaCaT , Humanos , Receptor de Pregnano X , Espécies Reativas de Oxigênio , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/metabolismo
3.
Nutrients ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615695

RESUMO

The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.


Assuntos
Camellia sinensis , Doenças Cardiovasculares , Catequina , Diabetes Mellitus , Síndrome Metabólica , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Obesidade , Catequina/farmacologia
4.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681206

RESUMO

Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet ß-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.

5.
Expert Opin Ther Targets ; 25(6): 435-449, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34236922

RESUMO

Introduction: Despite the availability of new vaccines for SARS-CoV-2, there has been slow uptake and problems with supply in some parts of the world. Hence, there is still a necessity for drugs that can prevent hospitalization of patients and reduce the strain on health care systems. Drugs with sigma affinity potentially provide protection against the most severe symptoms of SARS-COV-2 and could prevent mortality via interactions with the sigma-1 receptor.Areas covered: This review examines the role of the sigma-1 receptor and autophagy in SARS-CoV-2 infections and how they may be linked. The authors reveal how sigma ligands may reduce the symptoms, complications, and deaths resulting from SARS-CoV-2 and offer insights on those patient cohorts that may benefit most from these drugs.Expert opinion: Drugs with sigma affinity potentially offer protection against the most severe symptoms of SARS-CoV-2 via interactions with the sigma-1 receptor. Agonists of the sigma-1 receptor may provide protection of the mitochondria, activate mitophagy to remove damaged and leaking mitochondria, prevent ER stress, manage calcium ion transport, and induce autophagy to prevent cell death in response to infection.


Assuntos
Antivirais/uso terapêutico , Autofagia , Tratamento Farmacológico da COVID-19 , Hospitalização/estatística & dados numéricos , Receptores sigma/fisiologia , COVID-19/mortalidade , COVID-19/virologia , Humanos , SARS-CoV-2/isolamento & purificação , Receptor Sigma-1
6.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201882

RESUMO

Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer's disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas' health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.


Assuntos
Autofagia , Células/metabolismo , Saúde , Homeostase , Chás de Ervas , Animais , Humanos
7.
Expert Opin Ther Targets ; 25(5): 401-414, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34110944

RESUMO

INTRODUCTION: Autophagy is a cellular catabolic mechanism that helps clear damaged cellular components and is essential for normal cellular and tissue function. The sigma-1 receptor (σ-1R) is a chaperone protein involved in signal transduction, neurite outgrowth, and plasticity, improving memory, and neuroprotection. Recent evidence shows that σ-1R can promote autophagy. Autophagy activation by the σ-1Rs along with other neuroprotective effects makes it an interesting target for the treatment of Alzheimer's disease. AF710B, T-817 MA, and ANAVEX2-73 are some of the σ-1R agonists which have shown promising results and have entered clinical trials. These molecules have also been found to induce autophagy and show cytoprotective effects in cellular models. AREAS COVERED: This review provides insight into the current understanding of σ-1R functions related to autophagy and their role in alleviating AD. EXPERT OPINION: We propose a mechanism through which the activation of σ-1R and autophagy could alter amyloid precursor protein processing to inhibit amyloid-ß production by reconstituting cholesterol and gangliosides in the lipid raft to offer neuroprotection against AD. Future AD treatment could involve the combined targeting of the σ-1R and autophagy activation. We suggest that future studies investigate the link between autophagy the σ-1R and AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Terapia de Alvo Molecular , Receptores sigma/agonistas , Doença de Alzheimer/fisiopatologia , Animais , Autofagia/efeitos dos fármacos , Furanos/farmacologia , Humanos , Maleatos/farmacologia , Receptores sigma/metabolismo , Compostos de Espiro/farmacologia , Tiazolidinas/farmacologia , Tiofenos/farmacologia , Receptor Sigma-1
8.
Sci Rep ; 11(1): 596, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436817

RESUMO

Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.


Assuntos
Antidepressivos/farmacologia , Bacopa/química , Disfunção Cognitiva/prevenção & controle , Depressão/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Humanos , Metanálise como Assunto
9.
J Biochem Mol Toxicol ; 35(1): e22632, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926499

RESUMO

Alzheimer's disease (AD) accounts for an estimated 60% to 80% of all dementia cases. The present study is aimed at evaluating the neuroprotective efficacy of vitexin, an apigenin flavone glycoside using transgenic Caenorhabditis elegans strain (CL2006) of AD. The neuroprotective effect of vitexin was determined using physiological assays, quantitative polymerase chain reaction, and Western blotting. The results of survival and paralysis assay indicate that vitexin (200 µM) significantly extended the lifespan of the nematodes. Vitexin-treated nematodes showed a significant reduction in the expression of Aß, ace-1, and ace-2 genes when compared to control. Further, vitexin significantly upregulated the expression of acr-8 and dnj-14, and increased the lifespan of the nematodes. Vitexin was also found to modulate the unfolded protein response genes (hsp-4, pek-1, ire-1, and xbp-1) and suppress the expression of Aß. Overall, the results show that vitexin acts as a neuroprotective agent and protects transgenic C. elegans strains from Aß proteotoxicity.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais Geneticamente Modificados/metabolismo , Apigenina/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Resposta a Proteínas não Dobradas/genética
10.
Nutrients ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317106

RESUMO

Rhinacanthus nasutus (L.) Kurz (Acanthaceae) (Rn) is an herbaceous shrub native to Thailand and much of South and Southeast Asia. It has several synonyms and local or common names. The root of Rn is used in Thai traditional medicine to treat snake bites, and the roots and/or leaves can be made into a balm and applied to the skin for the treatment of skin infections such as ringworm, or they may be brewed to form an infusion for the treatment of inflammatory disorders. Rn leaves are available to the public for purchase in the form of "tea bags" as a natural herbal remedy for a long list of disorders, including diabetes, skin diseases (antifungal, ringworm, eczema, scurf, herpes), gastritis, raised blood pressure, improved blood circulation, early-stage tuberculosis antitumor activity, and as an antipyretic. There have been many studies investigating the roles of Rn or compounds isolated from the herb regarding diseases such as Alzheimer's and other neurodegenerative diseases, cancer, diabetes and infection with bacteria, fungi or viruses. There have, however, been no clinical trials to confirm the efficacy of Rn in the treatment of any of these disorders, and the safety of these teas over long periods of consumption has never been tested. This review assesses the recent research into the role of Rn and its constituent compounds in a range of diseases.


Assuntos
Acanthaceae , Diabetes Mellitus/tratamento farmacológico , Infecções/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta , Raízes de Plantas
11.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867388

RESUMO

Neurodegenerative disease is a collective term given for the clinical condition, which results in progressive degeneration of neurons and the loss of functions associated with the affected brain region. Apart from the increase in age, neurodegenerative diseases are also partly affected by diet and lifestyle practices. Parkinson's disease (PD) is a slow onset neurodegenerative disorder and the second most common neurodegenerative disease, which affects the motor system. Although there is no prescribed treatment method to prevent and cure PD, clinical procedures help manage the disease symptoms. Green tea polyphenols are known for several health benefits, including antioxidant, anti-inflammatory, and neuroprotective activity. The current manuscript summarizes the possible mechanisms of neuroprotective potential of green tea with a special focus on PD. Studies have suggested that the consumption of green tea protects against free-radicals, inflammation, and neuro-damages. Several in vivo studies aid in understanding the overall mechanism of green tea. However, the same dose may not be sufficient in humans to elicit similar effects due to complex physiological, social, and cultural development. Future research focused on more clinical trials could identify an optimum dose that could impart maximum health benefits to impart neuroprotection in PD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/terapia , Polifenóis/farmacologia , Chá , Animais , Humanos , Camundongos , Neuroproteção
12.
Biomed Pharmacother ; 105: 742-752, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908495

RESUMO

In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC50 value of 70.81 ±â€¯0.32 µM and 60.7 ±â€¯0.47 µM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 µM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fitol/farmacologia , Células A549 , Inibidores da Angiogênese/toxicidade , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Fitol/toxicidade , Fatores de Tempo
13.
Life Sci ; 203: 233-241, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704481

RESUMO

AIM: Glutamate is a major neurotransmitter involved in several brain functions and glutamate excitotoxicity is involved in Alzheimer's disease (AD). In the current study, the neuroprotective effect of the Indian medicinal plant Grewia tiliaefolia (GT) and its active component vitexin was evaluated in Neuro-2a cells against glutamate toxicity. MATERIALS AND METHODS: Neuro-2a cells were exposed to glutamate to cause excitotoxicity and the neuroprotective effect of GT and vitexin were evaluated using biochemical studies (estimation of reactive oxygen species, reactive nitrogen species, protein carbonyl content, lipid peroxidation level, mitochondrial membrane potential and caspase-3 activity), molecular docking studies, gene expression and western blot analysis. KEY FINDINGS: Glutamate exposure to Neuro-2a cells induced oxidative stress, loss of membrane potential, suppressed the expression of antioxidant response genes (Nrf-2, HO-1, NQO-1), glutamate transporters (GLAST-1, GLT-1) and induced the expression of NMDAR, Calpain. However, pre-treatment of cells with GT/vitexin inhibited oxidative stress mediated damage by augmenting the expression of Nrf-2/HO-1 pathway, inducing the expression of glutamate transporters and downregulating Calpain, NMDAR. Molecular docking showed that vitexin effectively binds to NMDAR and GSK-3ß and thereby can inhibit their activation. GT/vitexin also inhibited glutamate induced Bax expression. SIGNIFICANCE: Methanol extract of G. tiliaefolia and its active component vitexin can act in an antioxidant dependent mechanism as well as by regulating glutamate transporters in mitigating the toxicity exerted by glutamate in Neuro-2a cells. Our results conclude that GT/vitexin can act as potential drug leads for the therapeutic intervention of AD.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Apigenina/farmacologia , Ácido Glutâmico/toxicidade , Grewia/química , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Neuroblastoma/induzido quimicamente , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
14.
Toxicol In Vitro ; 50: 160-171, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29545167

RESUMO

Amyloid beta (Aß) formation is one of the neuropathological hallmarks of Alzheimer's disease (AD), which induces the generation of reactive oxygen species (ROS), further leading to the alteration of several signalling pathways. In the present study, vitexin has been evaluated for its neuroprotective activity against Aß25-35 induced toxicity in Neuro-2a cells. Results of cell free studies indicated that vitexin significantly inhibited the aggregation of Aß25-35. Studies in Neuro-2a cells revealed that Aß25-35 significantly affected the cell viability by inducing ROS mediated toxicity and apoptosis. However, pre-treatment of Neuro-2a cells with vitexin (50 µM) significantly restored the cell viability up to 92.86 ±â€¯5.57%. Vitexin has been found to inhibit the production of free radicals and suppress ROS mediated lipid peroxidation, protein oxidation and loss of membrane potential. Also, vitexin modulated the expression of genes involved in antioxidant response mechanisms (Nrf-2, HO-1), cholesterol metabolism (LXR-α, APOE, ABCA-1, Seladin-1), and endoplasmic reticulum stress (Grp78, Gadd153) to offer neuroprotection. Aß25-35 induced caspase-3 activation, and Bax protein expression was also found to be significantly inhibited by vitexin. Taken together, our results indicate that vitexin offers neuroprotection to cells in part via augmenting the antioxidant mechanisms, maintaining lipid homeostasis and inhibiting apoptosis induced by Aß.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apigenina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Glutationa/metabolismo , Proteínas de Choque Térmico/genética , Heme Oxigenase-1/genética , Receptores X do Fígado/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética
15.
Curr Drug Targets ; 18(13): 1529-1536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28025940

RESUMO

BACKGROUND: The plant milk thistle and silymarin has been traditionally used as a natural remedy for the treatment of various ailments including neurological disorders such as Alzheimer's and Parkinson's disease and cerebral ischemia for over 2000 years. OBJECTIVE: In this article we review the neuroprotective effects of silymarin against various neurological dysfunctions. RESULTS: The neuroprotective effects conferred by silymarin include modulation of various antioxidant mechanisms, and several kinases involved in cell signaling pathways, inhibition of the inflammatory response generated during neurodegeneration, neurotropic effects, regulation of neurotransmitters and inhibition of apoptosis. The ease of availability, comparative low cost and safety profile provide additional advantages for the use of this compound as a potent drug with immense clinical benefit. However, there is a growing need for improvements in the bioavailability of silymarin and related products, and more consistent and reliable human trials are required to accurately validate the neuroprotective efficacy of this natural compound. CONCLUSION: The promising outcomes of the studies mentioned in this review provide renewed insight into the clinical relevance of silymarin in a variety of neurodegenerative disorders where neuroinflammation and oxidative stress are pathologically relevant to disease progression.


Assuntos
Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Silimarina/química , Silimarina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Citocinas/metabolismo , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Silimarina/farmacocinética
16.
Metab Brain Dis ; 31(4): 937-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188290

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by accumulation and deposition of Aß peptide in human brain. The present study aimed to determine the protective effect of catechin rich extract of MERM (methanolic extract of Rhizophora mucronata) on Aß (25-35) induced cognitive impairment and neuronal toxicity in mice. In the present study AD characteristics were induced by intracerberoventricular administration of aggregated Aß (25-35) in the Swiss albino mice. Learning and memory deficits were assessed using behavioral assays such as Morris water maze, Y-maze and step down avoidance tasks. Oxidative stress mediated impairment were assessed by measuring the activities of enzymatic and non-enzymatic antioxidants, level of apoptotic protein and oxidative markers in the hippocampus and frontal cortex region. Histolopathological analysis of brain was also carried out. Results illustrated that oral treatment of MERM (200 and 400 mg/kg bw) significantly attenuated Aß (25-35) induced memory impairment as evaluated by behavioral tests. In addition treatment with MERM attenuated the elevation of ß-secretase activity accompanying the reduced level of Aß (25-35) in the cortex and hippocampus of brain. MERM also enhanced the cognitive function by significantly inhibiting AChE, BuChE and MAO-B. Furthermore, MERM attenuated lipid peroxidation, protein oxidation, restored the antioxidant status and inhibited neuronal apoptosis by down-regulating the level of caspase 3 and Bax protein. These data suggest that MERM rich in catechin can act as promising drug for AD treatment because of its antioxidant, anti-apoptotic and reducing Aß oligomer activities.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Monoaminoxidase/metabolismo , Fragmentos de Peptídeos , Extratos Vegetais/farmacologia , Rhizophoraceae , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Pharmacol Res ; 99: 1-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25982933

RESUMO

Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Quempferóis/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Disponibilidade Biológica , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/metabolismo , Quempferóis/química , Quempferóis/farmacocinética , Inibidores de Metaloproteinases de Matriz/farmacologia , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/antagonistas & inibidores
18.
Mini Rev Med Chem ; 15(9): 776-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26002710

RESUMO

Oxidative stress plays an important role in both initiation and progression of neurodegenerative diseases, such as Alzheimer and Parkinson. Therefore, much attention has been paid to antioxidants for developing therapeutic strategies for the neurodegenerative diseases. However, as serious adverse effects are related to synthetic antioxidants, recent research has been focused on natural products especially phenolic antioxidants. In the present article, we critically review the available literature related to the beneficial role of ferulic acid on Alzheimer's disease, since it is a natural antioxidant which is widely found in different fruits and vegetables. We also provide some informations about sources, chemical structure, bioavailability and clinical impacts of ferulic acid.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Ácidos Cumáricos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases/química , Colinesterases/metabolismo , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Ferula/química , Ferula/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA