Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124003

RESUMO

This study investigates the methods for controlling porosity in thermal pipes manufactured using selective laser melting (SLM) technology. Experiments conducted include water permeability tests and surface roughness measurements, which are complemented by SEM image ML-based analysis for pore recognition. The results elucidate the impact of SLM printing parameters on water permeability. Specifically, an increase in hatch and point distances leads to a linear rise in permeability, while higher laser power diminishes permeability. Using machine learning (ML) techniques, precise pore identification on SEM images depicting surface microstructures of the samples is achieved. The average percentage of the surface area containing detected pores for microstructure samples printed with laser parameters (laser power (W) _ hatch distance (µm) _ point distance (µm)) 175_ 80_80 was found to be 5.2%, while for 225_120_120, it was 4.2%, and for 275_160_160, it was 3.8%. Pore recognition was conducted using the Haar feature-based method, and the optimal patch size was determined to be 36 pixels on monochrome images of microstructures with a magnification of 33×, which were acquired using a Leica S9 D microscope.

2.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065884

RESUMO

The influence of acoustic anisotropy on ultrasonic testing reliability poses a challenge in evaluating products from additive technologies (AT). This study investigates how elasticity constants of anisotropic materials affect defect signal amplitudes in AT products. Experimental measurements on AT samples were conducted to determine elasticity constants. Using Computational Modeling and Simulation Software (CIVA), simulations explored echo signal changes across ultrasound propagation directions. The parameters A13 (the ratio between the velocities of ultrasonic transverse waves with vertical and horizontal polarizations at a 45-degree angle to the growth direction), A3 (the ratio for waves at a 90-degree angle), and Ag (the modulus of the difference between A13 and A3) were derived from wave velocity relationships and used to characterize acoustic anisotropy. Comparative analysis revealed a strong correlation (0.97) between the proposed anisotropy coefficient Ag and the amplitude changes. Threshold values of Ag were introduced to classify anisotropic materials based on observed amplitude changes in defect echo signals. In addition, a method leveraging deep learning to predict Ag based on data from other anisotropy constants through genetic algorithm (GA)-optimized neural network (NN) architectures is proposed, offering an approach that can reduce the computational costs associated with calculating such constants.

3.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932101

RESUMO

This paper explores the application of multi-objective optimization techniques, including MOPSO, NSGA II, and SPEA2, to optimize the hyperparameters of artificial neural networks (ANNs) and support vector machines (SVMs) for predicting the physical properties of textile polymer composite materials (TPCMs). The optimization process utilizes data on the physical characteristics of the constituent fibers and fabrics used to manufacture these composites. By employing optimization algorithms, we aim to enhance the predictive accuracy of the ANN and SVM models, thereby facilitating the design and development of high-performance textile polymer composites. The effectiveness of the proposed approach is demonstrated through comparative analyses and validation experiments, highlighting its potential for optimizing complex material systems.

4.
Sensors (Basel) ; 24(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38894353

RESUMO

The paper introduces a computer vision methodology for detecting pitting corrosion in gas pipelines. To achieve this, a dataset comprising 576,000 images of pipelines with and without pitting corrosion was curated. A custom-designed and optimized convolutional neural network (CNN) was employed for binary classification, distinguishing between corroded and non-corroded images. This CNN architecture, despite having relatively few parameters compared to existing CNN classifiers, achieved a notably high classification accuracy of 98.44%. The proposed CNN outperformed many contemporary classifiers in its efficacy. By leveraging deep learning, this approach effectively eliminates the need for manual inspection of pipelines for pitting corrosion, thus streamlining what was previously a time-consuming and cost-ineffective process.

5.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732673

RESUMO

Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane's IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick's second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively.

6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612671

RESUMO

This paper offers a thorough investigation of hyperparameter tuning for neural network architectures using datasets encompassing various combinations of Methylene Blue (MB) Reduction by Ascorbic Acid (AA) reactions with different solvents and concentrations. The aim is to predict coefficients of decay plots for MB absorbance, shedding light on the complex dynamics of chemical reactions. Our findings reveal that the optimal model, determined through our investigation, consists of five hidden layers, each with sixteen neurons and employing the Swish activation function. This model yields an NMSE of 0.05, 0.03, and 0.04 for predicting the coefficients A, B, and C, respectively, in the exponential decay equation A + B · e-x/C. These findings contribute to the realm of drug design based on machine learning, providing valuable insights into optimizing chemical reaction predictions.


Assuntos
Ácido Ascórbico , Azul de Metileno , Desenho de Fármacos , Aprendizado de Máquina , Redes Neurais de Computação
7.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543343

RESUMO

This study delves into the mechanical characteristics of polyamide PA2200 components crafted using selective laser sintering (SLS) technology. Our primary objective is to analyze the tensile behavior of the components printed at various orientations, showing its response to diverse loading conditions. Finite element method (FEM) modeling was employed to analyze the tensile behavior of these details. The time determined for breaking the detail is 9 s. In addition we forecast key properties, such as tensile behavior and strength, using machine learning (ML) techniques, and the best models are for predicting relative elongation are KNeighborsRegressor and SVR.

8.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201778

RESUMO

This article investigates the utility of machine learning (ML) methods for predicting and analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers' characteristics, the study encompasses an extensive range of polymer properties, spanning compressive and tensile strength to thermal and electrical behaviors. Using various regression methods like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough evaluation using the most common quality metrics. As a result of a series of experimental studies on the selection of effective model parameters, those that provide a high-quality solution to the stated problem were found. The best results were achieved by Random Forest with the highest R2 scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures, respectively. The outcomes are intricately compared, providing valuable insights into the efficiency of distinct ML approaches in predicting polymer properties. Unknown values for each characteristic were predicted, and a method validation was performed by training on the predicted values, comparing the results with the specified variance values of each characteristic. The research not only advances our comprehension of polymer physics but also contributes to informed model selection and optimization for materials science applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA