Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 545, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177653

RESUMO

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Assuntos
Roedores , Sigmodontinae , Animais , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversão Cromossômica , Coloração Cromossômica
2.
Ecol Evol ; 11(12): 7125-7131, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188799

RESUMO

Mesomys Wagner, 1845 (Rodentia, Echimyidae, Eumysopinae) currently has four recognized species, three of which occur in Brazil: Mesomys hispidus (probably a species complex), M. occultus, and M. stimulax. Mesomys leniceps is found in montane forests of northern Peru. Mesomys stimulax, the focus of the present study, has a distribution that is restricted to the central and eastern Amazonia south of the Amazon River, extending from the left bank of the Tapajós River to the right bank of the Tocantins River, and south to the southeast portion of Pará State. The genus presents karyotypes with diploid number 2n = 60 and Fundamental Number (FN) = 116 for M. hispidus and M. stimulax, and 2n = 42, FN = 54 for M. occultus. We studied the karyotype of a female specimen of M. stimulax collected from the Tapirapé-Aquiri National Forest, Marabá, Pará, Brazil, in the Xingu/Tocantins interfluvium. The obtained karyotype (2n = 60 and FN = 110) differs from that described in the literature for both M. stimulax and M. hispidus by exhibiting more biarmed chromosomes, probably due to pericentric inversions and/or centromeric repositioning, and exhibiting differences in the amount and distribution of constitutive heterochromatin (CH). These results suggest that, similar to what has already been proposed for M. hispidus, M. stimulax may represent a species complex and/or cryptic species. The mechanisms of chromosomal diversification in Mesomys and the biogeographic implications are discussed reinforcing the need for broad systematic review for Mesomys.

3.
PLoS One ; 15(7): e0235788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634157

RESUMO

The genus Makalata is a taxonomically complex group of rodents on which few cytogenetic studies have been performed. Most of the published karyotypes were described based only on conventional chromosome staining. Here, we studied the karyotypes of Makalata from two Brazilian Amazonian states, Amapá and Pará, by Giemsa-staining, G- and C-banding, AgNO3-staining and FISH with 18S rDNA and telomeric sequences probes. We observed 2n = 66/FN = 124 in the Pará state population in Makalata sp; and 2n = 72/FN = 128 in the Amapá state population in M. didelphoides. Multiple chromosome rearrangements may have given rise to these karyotypes, which differ significantly from each other and from those reported in the literature. The chromosomal differences among the described Makalata karyotypes can act as a barrier to gene flow; since they are also associated with geographic barriers (e.g., rivers) and numerous molecular differences, they could be seen as evidence for reproductive isolation of populations from genus Makalata. Our data suggest that the genus is chromosomally diverse and the karyotypes may belong to different species. These karyotypes may prove useful as taxonomic markers for these rodents.


Assuntos
Cariótipo , Roedores/genética , Animais , Brasil , Bandeamento Cromossômico , DNA Ribossômico/genética , Fluxo Gênico , Cariotipagem , Roedores/classificação , Especificidade da Espécie , Telômero/genética
4.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244440

RESUMO

Comparative chromosome-painting analysis among highly rearranged karyotypes of Sigmodontinae rodents (Rodentia, Cricetidae) detects conserved syntenic blocks, which are proposed as chromosomal signatures and can be used as phylogenetic markers. In the Akodontini tribe, the molecular topology (Cytb and/or IRBP) shows five low-supported clades (divisions: "Akodon", "Bibimys", "Blarinomys", "Oxymycterus", and "Scapteromys") within two high-supported major clades (clade A: "Akodon", "Bibimys", and "Oxymycterus"; clade B: "Blarinomys" and "Scapteromys"). Here, we examine the chromosomal signatures of the Akodontini tribe by using Hylaeamys megacephalus (HME) probes to study the karyotypes of Oxymycterus amazonicus (2n = 54, FN = 64) and Blarinomys breviceps (2n = 28, FN = 50), and compare these data with those from other taxa investigated using the same set of probes. We strategically employ the chromosomal signatures to elucidate phylogenetic relationships among the Akodontini. When we follow the evolution of chromosomal signature states, we find that the cytogenetic data corroborate the current molecular relationships in clade A nodes. We discuss the distinct events that caused karyotypic variability in the Oxymycterus and Blarinomys genera. In addition, we propose that Blarinomys may constitute a species complex, and that the taxonomy should be revised to better delimit the geographical boundaries and their taxonomic status.


Assuntos
Cariótipo , Filogenia , Roedores/classificação , Roedores/genética , Animais , Evolução Biológica , Brasil , Coloração Cromossômica , Citogenética/métodos , Geografia , Cariotipagem , Masculino , Sigmodontinae/classificação , Sigmodontinae/genética , Sintenia
5.
PLoS One ; 12(7): e0181434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727788

RESUMO

Among the Oryzomyini (Sigmodontinae), Oecomys is the most speciose, with 17 species. This genus presents high karyotypic diversity (2n = 54 to 2n = 86) and many taxonomic issues at the species level because of the presence of cryptic species and the overlap of morphological characters. For these reasons the real number of species of Oecomys may be underestimated. With the aim of verifying if the taxon Oecomys catherinae is composed of more than one species, we made comparative studies on two populations from two regions of Brazil, one from the Amazon and another from the Atlantic Forest using both classical cytogenetics (G- and C-banding) and comparative genomic mapping with whole chromosome probes of Hylaeamys megacephalus (HME), molecular data (cytochrome b mitochondrial DNA) and morphology. Our results confirm that Oecomys catherinae occurs in the southeast Amazon, and reveal a new karyotype for the species (2n = 62, FNa = 62). The comparative genomic analysis with HME probes identified chromosomal homeologies between both populations and rearrangements that are responsible for the different karyotypes. We compared our results in Sigmodontinae genera with other studies that also used HME probes. These chromosomal differences together with the absence of consistent differentiation between the two populations on morphological and molecular analyses suggest that these populations may represent cryptic species.


Assuntos
Arvicolinae/genética , Sigmodontinae/genética , Animais , Arvicolinae/anatomia & histologia , Brasil , Coloração Cromossômica , Cromossomos de Mamíferos , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Masculino , Filogenia , Sigmodontinae/anatomia & histologia , Especificidade da Espécie
6.
PLoS One ; 11(1): e0146179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800516

RESUMO

Sigmodontinae rodents show great diversity and complexity in morphology and ecology. This diversity is accompanied by extensive chromosome variation challenging attempts to reconstruct their ancestral genome. The species Hylaeamys megacephalus--HME (Oryzomyini, 2n = 54), Necromys lasiurus--NLA (Akodontini, 2n = 34) and Akodon sp.--ASP (Akodontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the rearrangements that are responsible for such differences. In this study we analyzed these changes using whole chromosome probes of HME in cross-species painting of NLA and ASP to construct chromosome homology maps that reveal the rearrangements between species. We include data from the literature for other Sigmodontinae previously studied with probes from HME and Mus musculus (MMU) probes. We also use the HME probes on MMU chromosomes for the comparative analysis of NLA with other species already mapped by MMU probes. Our results show that NLA and ASP have highly rearranged karyotypes when compared to HME. Eleven HME syntenic blocks are shared among the species studied here. Four syntenies may be ancestral to Akodontini (HME2/18, 3/25, 18/25 and 4/11/16) and eight to Sigmodontinae (HME26, 1/12, 6/21, 7/9, 5/17, 11/16, 20/13 and 19/14/19). Using MMU data we identified six associations shared among rodents from seven subfamilies, where MMU3/18 and MMU8/13 are phylogenetic signatures of Sigmodontinae. We suggest that the associations MMU2entire, MMU6proximal/12entire, MMU3/18, MMU8/13, MMU1/17, MMU10/17, MMU12/17, MMU5/16, MMU5/6 and MMU7/19 are part of the ancestral Sigmodontinae genome.


Assuntos
Cromossomos , Filogenia , Sigmodontinae/genética , Animais , Evolução Biológica , Bandeamento Cromossômico , Coloração Cromossômica , Feminino , Heterocromatina/genética , Hibridização in Situ Fluorescente , Cariótipo , Masculino
7.
Chromosome Res ; 21(2): 107-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23494775

RESUMO

Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.


Assuntos
Cariótipo , Cariotipagem/métodos , Sigmodontinae/classificação , Sigmodontinae/genética , Animais , Brasil , Bandeamento Cromossômico , Coloração Cromossômica , Sondas de DNA/genética , Diploide , Feminino , Citometria de Fluxo , Masculino , Metáfase , Especificidade da Espécie , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA