Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(39): 58628-58647, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794320

RESUMO

This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Própole , Anti-Inflamatórios , Antivirais/farmacologia , Vacinas contra COVID-19 , Humanos , Própole/farmacologia , SARS-CoV-2
2.
Sci Rep ; 9(1): 14339, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586093

RESUMO

The biorecovery of europium (Eu) from primary (mineral deposits) and secondary (mining wastes) resources is of interest due to its remarkable luminescence properties, important for modern technological applications. In this study, we explored the tolerance levels, reduction and intracellular bioaccumulation of Eu by a site-specific bacterium, Clostridium sp. 2611 isolated from Phalaborwa carbonatite complex. Clostridium sp. 2611 was able to grow in minimal medium containing 0.5 mM Eu3+. SEM-EDX analysis confirmed an association between Eu precipitates and the bacterium, while TEM-EDX analysis indicated intracellular accumulation of Eu. According to the HR-XPS analysis, the bacterium was able to reduce Eu3+ to Eu2+ under growth and non-growth conditions. Preliminary protein characterization seems to indicate that a cytoplasmic pyruvate oxidoreductase is responsible for Eu bioreduction. These findings suggest the bioreduction of Eu3+ by Clostridium sp. as a resistance mechanism, can be exploited for the biorecovery of this metal.


Assuntos
Bioacumulação , Clostridium/metabolismo , Európio/metabolismo , Microbiologia do Solo , Anaerobiose , Clostridium/química , Clostridium/isolamento & purificação , Európio/química , Microbiologia Industrial , Mineração , Oxirredução , Solo/química
3.
Front Microbiol ; 10: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761115

RESUMO

Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01-0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.

4.
Environ Sci Pollut Res Int ; 22(11): 8442-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25548012

RESUMO

High concentrations of uranium(VI) in the Witwatersrand Basin, South Africa from mining leachate is a serious environmental concern. Treatment systems are often ineffective. Therefore, optimization of a bioremediation system that facilitates the bioreduction of U(VI) based on biostimulation of indigenous bacterial communities can be a viable alternative. Tolerance of the indigenous bacteria to high concentrations of U and the amount of citric acid required for U removal was optimized. Two bioreactor studies which showed effective U(VI) removal more than 99 % from low (0.0037 mg L(-1)) and high (10 mg L(-1)) concentrations of U to below the limit allowed by South African National Standards for drinking water (0.0015 mg L(-1)). The second bioreactor was able to successfully adapt even with increasing levels of U(VI) feed water up to 10 mg L(-1), provided that enough electron donor was available. Molecular biology analyses identified Desulfovibrio sp. and Geobacter sp. among known species, which are known to reduce U(VI). The mineralogical analysis determined that part of the uranium precipitated intracellularly, which meant that the remaining U(VI) was precipitated as U(IV) oxides and TEM-EDS also confirmed this analysis. This was predicted with the geochemical model from the chemical data, which demonstrated that the treated drainage was supersaturated with respect to uraninite > U4O9 > U3O8 > UO2(am). Therefore, the tolerance of the indigenous bacterial community could be optimized to remediate up to 10 mg L(-1), and the system can thus be upscaled and employed for remediation of U(VI) impacted sites.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Bactérias Anaeróbias Gram-Negativas/metabolismo , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Purificação da Água/métodos , Eletroforese em Gel de Gradiente Desnaturante , Desulfovibrio/metabolismo , Geobacter/metabolismo , Microscopia Eletrônica de Transmissão , Mineração , Modelos Químicos , Oxirredução , Reação em Cadeia da Polimerase , África do Sul , Urânio/análise , Compostos de Urânio/análise , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA