Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int Immunopharmacol ; 133: 112020, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608449

RESUMO

Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.


Assuntos
Doença Celíaca , Dieta Livre de Glúten , Humanos , Doença Celíaca/dietoterapia , Doença Celíaca/terapia , Doença Celíaca/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Proteína 2 Glutamina gama-Glutamiltransferase , Imunoterapia/métodos , Glutens/imunologia , Transglutaminases/imunologia , Transglutaminases/metabolismo
2.
Biomed Pharmacother ; 166: 115301, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562236

RESUMO

The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.


Assuntos
Medicina Regenerativa , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistemas de Liberação de Medicamentos , Hidrogéis/farmacologia , Neovascularização Fisiológica
3.
Biomed Pharmacother ; 165: 115048, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385212

RESUMO

Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.


Assuntos
Neoplasias da Mama , COVID-19 , Animais , Humanos , Feminino , Sistemas de Liberação de Medicamentos/métodos , Materiais Biocompatíveis , COVID-19/terapia , Administração Cutânea , Pele , Lipossomos , Imunoterapia , Agulhas
4.
Biosens Bioelectron ; 226: 115131, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804663

RESUMO

Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in µPADs. Enzymatic µPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic µPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic µPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of µPADs and discuss different fabrication methods as the central parts of the µPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic µPADs for rapid, low-cost, and mass production and improvement have been considered.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , Papel
5.
Prep Biochem Biotechnol ; 53(3): 239-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35579623

RESUMO

Several monoclonal antibodies targeting the CD20 have been produced and Ofatumumab is a case in point. Although whole antibodies target cancer cells effectively, their applications are restricted in some ways. Single-chain fragment variable antibodies, rather than employing the entire structure of antibodies, have proven a practical approach for creating completely functional antigen-binding fragments. In current research, the DNA coding sequence of VL and VH of the wild and mutant forms of ofatumumab were joined with a flexible linker (GGGGS)3 separately. Using the E. coli BL21 (DE3) expression system, the VL-linker-VH genes were cloned into the pET-28 a (+), and the associated recombinant proteins were produced. Purified and refolded scFvs (scFv-C and scFv-V3) represented a concentration of around 0.7 mg/ml from 1 L of initial E. coli culture with a molecular weight of about 27 kDa. Affinity measurement disclosed anti-CD20 scFv-V3 possesses a higher affinity constant compared to anti-CD20 scFv-C. The recombinant scFvs exclusively attach to Raji cells but not to Jurkat cells, according to a cell-ELISA analysis. The MTT test signified anti-CD20 scFvs could affect cell viability in Raji cells but had no impact on Jurkat cells and also, Raji cells viability was affected more significantly by anti-CD20 scFv-V3.


Assuntos
Antígenos CD20 , Anticorpos de Cadeia Única , Humanos , Antígenos CD20/genética , Antígenos CD20/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos de Cadeia Única/genética
6.
J Compos Sci ; 7(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38645939

RESUMO

Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. This review article aims to cover the most recent applications of 3D printing techniques in the manufacturing of dental prosthetics. More specifically, after describing various 3D printing techniques and their advantages/disadvantages, the applications of 3D printing in dental prostheses are elaborated in various examples in the literature. Different 3D printing techniques have the capability to use different materials, including thermoplastic polymers, ceramics, and metals with distinctive suitability for dental applications, which are discussed in this article. The relevant limitations and challenges that currently limit the efficacy of 3D printing in this field are also reviewed. This review article has employed five major scientific databases, including Google Scholar, PubMed, ScienceDirect, Web of Science, and Scopus, with appropriate keywords to find the most relevant literature in the subject of dental prostheses 3D printing.

7.
Membranes (Basel) ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363596

RESUMO

Lithium ions play a crucial role in the energy storage industry. Finding suitable lithium-ion-conductive membranes is one of the important issues of energy storage studies. Hence, a perovskite-based membrane, Lithium Lanthanum Titanate (LLTO), was innovatively implemented in the presence and absence of solvents to precisely understand the mechanism of lithium ion separation. The ion-selective membrane's mechanism and the perovskite-based membrane's efficiency were investigated using Molecular Dynamic (MD) simulation. The results specified that the change in the ambient condition, pH, and temperature led to a shift in LLTO pore sizes. Based on the results, pH plays an undeniable role in facilitating lithium ion transmission through the membrane. It is noticeable that the hydrogen bond interaction between the ions and membrane led to an expanding pore size, from (1.07 Å) to (1.18-1.20 Å), successfully enriching lithium from seawater. However, this value in the absence of the solvent would have been 1.1 Å at 50 °C. It was found that increasing the temperature slightly impacted lithium extraction. The charge analysis exhibited that the trapping energies applied by the membrane to the first three ions (Li+, K+, and Na+) were more than the ions' hydration energies. Therefore, Li+, K+, and Na+ were fully dehydrated, whereas Mg2+ was partially dehydrated and could not pass through the membrane. Evaluating the membrane window diameter, and the combined effect of the three key parameters (barrier energy, hydration energy, and binding energy) illustrates that the required energy to transport Li ions through the membrane is higher than that for other monovalent cations.

8.
Biomed Pharmacother ; 153: 113431, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076549

RESUMO

The ultimate goal of regenerative medicine is to repair, regenerate, or reconstruct functional loss in failed tissues and/or organs. Although regenerative medicine is a relatively new field, multiple diverse research groups are helping regenerative medicine reach its objectives. All endeavors in this field go through in silico, in vitro, in vivo, and clinical trials which are prerequisites to translating such approaches from the bench to the bedside. However, despite such promise, there are only a few regenerative medicine approaches that have actually entered commercialization due to extensive demands for the inclusion of multiple rules, principles, and finances, to reach the market. This review covers the commercialization of regenerative medicine, including its progress (or lack thereof), processes, regulatory concerns, and immunological considerations to name just a few key areas. Also, commercially available engineered tissues, including allografts, synthetic substitutes, and 3D bioprinting inks, along with commercially available cell and gene therapeutic products, are reviewed. Clinical applications and future perspectives are stated with a clear road map for improving the regenerative medicine field.


Assuntos
Bioimpressão , Medicina Regenerativa , Engenharia Tecidual
9.
Cancer Cell Int ; 22(1): 215, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715800

RESUMO

MIR4435-2HG (LINC00978) is a long non-coding RNA (lncRNA) that acts as an oncogene in almost all cancers. This lncRNA participates in the molecular cascades involved in other disorders such as coronary artery diseases, osteonecrosis, osteoarthritis, osteoporosis, and periodontitis. MIR4435-2HG exerts its functions via the spectrum of different mechanisms, including inhibition of apoptosis, sponging microRNAs (miRNAs), promoting cell proliferation, increasing cell invasion and migration, and enhancing epithelial to mesenchymal transition (EMT). MIR4435-2HG can regulate several signaling pathways, including Wnt, TGF-ß/SMAD, Nrf2/HO-1, PI3K/AKT, MAPK/ERK, and FAK/AKT/ß­catenin signaling pathways; therefore, it can lead to tumor progression. In the present review, we aimed to discuss the potential roles of lncRNA MIR4435-2HG in developing cancerous and non-cancerous conditions. Due to its pivotal role in different disorders, this lncRNA can serve as a potential biomarker in future investigations. Moreover, it may serve as a potential therapeutic target for the treatment of various diseases.

10.
Comput Biol Med ; 144: 105386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272116

RESUMO

Drug conjugation with enzyme-sensitive peptides is one of the innovative smart delivery systems for cancer therapy. This delivery method has some advantages, such as lowering side effects and increasing treatment selectivity. Herein, two conjugates of doxorubicin and small peptide are designed that are sensitive to Cathepsin B, a tumor homing enzyme. The formation of nanoparticles at three different numbers of drug peptide prodrugs (including 30, 50, and 70 prodrugs) was studied. In addition, three metal-organic frameworks (MOF) nanocarriers, including Zeolitic Imidazolate Frameworks (ZIF), Universitetet I Oslo MOF (UIO-66), and MOF of Hong Kong University of Science and Technology (HKUST-1), were used to increase the resistance of the prodrugs to decomposition during blood flow circulation. Then, the interactions between doxorubicin's prodrug and different MOFs were investigated. Furthermore, the impact of microfluidics on nanoparticle interactions was studied. Molecular dynamic simulation was used to investigate thermodynamic and conformational parameters. The results showed that the concentration of doxorubicin prodrugs affected cluster formation. Moreover, based on Gibb's free energy analysis, the interaction of these prodrugs with various types of MOFs revealed more spontaneous interactions in microfluidic modeling conditions. ZIF had the best and most stable interactions with the prodrugs in bulk and microfluidic modeling. As a result, the best and most stable state was associated with a lower concentration of these prodrugs with ZIF in the microfluidic condition.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Pró-Fármacos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos , Ácidos Ftálicos , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico
11.
Membranes (Basel) ; 12(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054606

RESUMO

Recently, demands for raw materials like rare earth elements (REEs) have increased considerably due to their high potential applications in modern industry. Additionally, REEs' similar chemical and physical properties caused their separation to be difficult. Numerous strategies for REEs separation such as precipitation, adsorption and solvent extraction have been applied. However, these strategies have various disadvantages such as low selectivity and purity of desired elements, high cost, vast consumption of chemicals and creation of many pollutions due to remaining large amounts of acidic and alkaline wastes. Membrane separation technology (MST), as an environmentally friendly approach, has recently attracted much attention for the extraction of REEs. The separation of REEs by membranes usually occurs through three mechanisms: (1) complexation of REE ions with extractant that is embedded in the membrane matrix, (2) adsorption of REE ions on the surface created-active sites on the membrane and (3) the rejection of REE ions or REEs complex with organic materials from the membrane. In this review, we investigated the effect of these mechanisms on the selectivity and efficiency of the membrane separation process. Finally, potential directions for future studies were recommended at the end of the review.

12.
J Biomol Struct Dyn ; 40(10): 4409-4418, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336619

RESUMO

In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Nanopartículas , Ácido Poliglicólico , Biologia Computacional , Portadores de Fármacos/química , Ácido Láctico/química , Ligantes , Simulação de Acoplamento Molecular , Nanopartículas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
13.
J Biomol Struct Dyn ; 40(22): 12268-12276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34427178

RESUMO

Alzheimer's disease is a neurodegenerative disease caused by the deposition and accumulation of amyloid-ß (Aß) peptides in the brain neurons. Current medications are not a definitive cure for this disease, but they can hamper the signs and symptoms of Alzheimer's disease. Therefore, prevention is the best way to deal with this disease. In this study, the novel structures based on MBenes (such as Cd2B, Mo2B, Cu2B, and Ta2B) are proposed to prevent amyloid-ß accumulation in Alzheimer's disease. Regarding the remarkable MBene properties such as tunability, biocompatibility, and low manufacturing cost, the effect of these structures on amyloid-ß deformation was explored using molecular dynamics simulation. To provide an atomic analysis of Beta-amyloid behavior in the presence of these structures, the compaction, contact area, and stability of Beta-amyloid were investigated. The results indicated the satisfactory performance of MBenes on the destabilization of amyloid-ß structures. Moreover, given the higher interactions between Cd2B and amyloid-ß, the instability, compaction, and the contact area of amyloid-ß particles were investigated in this complex. The findings confirmed Cd2B as the best structure to prevent amyloid-ß accumulation. The results of this investigation paved the way for the development of these structures as a medicinal agent to prevent Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Cádmio , Peptídeos beta-Amiloides/química , Amiloide
14.
J Biomol Struct Dyn ; 40(21): 11460-11466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34328374

RESUMO

Herein, based on the paramount importance of combating emerging diseases, through employing a detailed in-silico study, the possibility of using MXenes in suppressing the coronavirus infection was elucidated. To this end, first, interactions of MXene nanosheets (Mn2C, Ti2C, and Mo2C) and spike protein (SP), the main infecting portion of the COVID-19, were investigated. It was found that the modeled MXenes were effective in attracting the SP, so that they can be exploited in filtering the coronavirus. In addition, the effect of the MXenes on the SP structure was assessed which demonstrated that the secondary structure of the SP could be changed. Therefore, the post-interactions of the SP/ACE2 (receptor of coronavirus in the body) could be interrupted, declaring the lower chance of coronavirus infecting. The in-silico studies revealed that the MXenes not only can be used to adsorb and hinder the distribution of the coronavirus but also affect the SP structure and the SP/ACE2 interactions to interrupt the COVID-19 threat. Therefore, MXenes can be exploited with simultaneous roles in physical inhibition and reactive weakening of the COVID-19. In this regard, the Mn2C nanosheet was well suited, which is suggested as a promising candidate to combat the coronavirus.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo
15.
Mater Chem Phys ; 276: 125382, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34725529

RESUMO

The recent pandemic of COVID-19 has raised global health concerns. Preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) activity in the body is a very promising method to overcome the COVID-19 pandemic. One of the prevention methods is constraining the binding process among the human cell receptor-ACE2 and coronavirus spike protein. In the research done, the effect of deformation of the spike protein structure, due to the covalent organic frameworks (COFs), in reducing the interactions of ACE2 and the spike protein by the computational method was investigated. In this regard, atomic analysis of the interactions of ACE2 and the spike protein is provided using a molecular dynamics simulation. First, we investigated the interactions of the three different COFs, including COF-78, DAAQ-TFP, and COF-OEt, with the spike protein by analyzing the bond energies, as well as structural changes of the spike protein. Then, intermolecular interactions of the deformed spike protein along with ACE2 were assessed to clarify the protein's fusion after the deformation. As indicated by the results, although all introduced COFs deformed the spike protein in an effective way, COF-78 showed the best performance in the prevention of spike protein-ACE2 interactions by changing the molecular structure of the protein. Indeed, the interaction analysis of the deformed spike protein by COF-78 with the ACE2 showed that their interactions had the lowest absolute value of energy, along with the least amount of hydrogen bonds, in which the compaction of the protein was lower compared to the other deformed proteins. Moreover, having a high contact area with an aqueous media as well as severe fluctuations during the simulation time confirmed the positive performance of COF-78. In the current study, we aimed to introduce novel materials and COVID-19 prevention methodology that can be used in face masks and for surface disinfection.

16.
Drug Deliv Transl Res ; 12(6): 1408-1422, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34476766

RESUMO

In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (Mpro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of Mpro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the Mpro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.


Assuntos
Tratamento Farmacológico da COVID-19 , Grafite , Nanoestruturas , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Commun Chem ; 5(1): 132, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36697945

RESUMO

Significant attempts have been made to improve the production of ion-selective membranes (ISMs) with higher efficiency and lower prices, while the traditional methods have drawbacks of limitations, high cost of experiments, and time-consuming computations. One of the best approaches to remove the experimental limitations is artificial intelligence (AI). This review discusses the role of AI in materials discovery and ISMs engineering. The AI can minimize the need for experimental tests by data analysis to accelerate computational methods based on models using the results of ISMs simulations. The coupling with computational chemistry makes it possible for the AI to consider atomic features in the output models since AI acts as a bridge between the experimental data and computational chemistry to develop models that can use experimental data and atomic properties. This hybrid method can be used in materials discovery of the membranes for ion extraction to investigate capabilities, challenges, and future perspectives of the AI-based materials discovery, which can pave the path for ISMs engineering.

18.
Ann Parasitol ; 68(3): 543-551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587611

RESUMO

Echinococcus granulosus is the etiologic agent of cystic echinococcosis. Numerous research studies have been conducted on natural scolicidal agents to inactivate protoscolices during surgery. This study was undertaken to compare the in vitro scolicidal effects of hydroalcoholic extracts of Calendula officinalis, Artemisia dracunculus, Artemisia absinthium and Ferula assafoetida. The scolicidal activities of the extracts were tested at different concentrations following incubation periods of 10, 30 and 60 min. The chemical composition of the hydroalcoholic extracts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The major chemical components of C. officinalis, A. dracunculus, A. absinthium and F. assafoetida were identified as n-Docosane (14.17%), 2H-1-benzopyran-2-one, 7-methoxy (54.96%), n-Docosane (9.72%) and 2-methoxy-3-methyl-butyric acid, methyl ester (13.9%), respectively. The results showed that the hydroalcoholic extracts of A. absinthium and F. assafoetida at a concentration of 250 mg/ml resulted in killing 100% of the protoscolices at 60 minutes, while the concentration of 250 mg/ml of hydroalcoholic extract of C. officinalis and A. dracunculus resulted in killing 42.33% and 65.67%, respectively. The findings of the present study showed that A. absinthium and F. assafoetida have potent scolicidal effects. However, additional in vivo studies are required to confirm the efficacy of these plant-derived extracts against hydatid cyst for their clinical use.


Assuntos
Artemisia absinthium , Artemisia , Calendula , Equinococose , Echinococcus granulosus , Echinococcus , Ferula , Animais , Equinococose/tratamento farmacológico , Extratos Vegetais/farmacologia
19.
Sci Rep ; 11(1): 21538, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728678

RESUMO

Here, molecular dynamics (MD) simulations were employed to explore the self-assembly of polymers and docetaxel (DTX) as an anticancer drug in the presence of nitrogen, phosphorous, and boron-nitrogen incorporated graphene and fullerene. The electrostatic potential and the Gibbs free energy of the self-assembled materials were used to optimize the atomic doping percentage of the N- and P-doped formulations at 10% and 50%, respectively. Poly lactic-glycolic acid (PLGA)- polyethylene glycol (PEG)-based polymeric nanoparticles were assembled in the presence of nanocarbons in the common (corresponding to the bulk environment) and interface of organic/aqueous solutions (corresponding to the microfluidic environment). Assessment of the modeling results (e.g., size, hydrophobicity, and energy) indicated that among the nanocarbons, the N-doped graphene nanosheet in the interface method created more stable polymeric nanoparticles (PNPs). Energy analysis demonstrated that doping with nanocarbons increased the electrostatic interaction energy in the self-assembly process. On the other hand, the fullerene-based nanocarbons promoted van der Waals intramolecular interactions in the PNPs. Next, the selected N-doped graphene nanosheet was utilized to prepare nanoparticles and explore the physicochemical properties of the nanosheets in the permeation of the resultant nanoparticles through cell-based lipid bilayer membranes. In agreement with the previous results, the N-graphene assisted PNP in the interface method and was translocated into and through the cell membrane with more stable interactions. In summary, the present MD simulation results demonstrated the success of 2D graphene dopants in the nucleation and growth of PLGA-based nanoparticles for improving anticancer drug delivery to cells, establishing new promising materials and a way to assess their performance that should be further studied.


Assuntos
Biologia Computacional/métodos , Docetaxel/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Antineoplásicos/química , Tamanho da Partícula
20.
Inform Med Unlocked ; 26: 100755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660882

RESUMO

The COVID-19 pandemic, known as coronavirus pandemic, a global pandemic, emerged from the beginning of 2020 and became dominant in many countries. As COVID-19 is one of the deadliest pandemics in history and has a high rate of distribution, a fast and extensive reaction was needed. Considering its composition, revealing the infection mechanism is beneficial for effective decisions against the spread and attack of COVID-19. Investigating data from numerous studies confirms that the penetration of SARS-CoV-2 occurs along with bonding spike protein (S protein) and through ACE2; Therefore, these two parts were the focus of research on the suppression and control of the infection. Performing lab research on all promising candidates requires years of experimental study, which is time-consuming and not an acceptable solution. Molecular dynamic simulation can decipher the performance of nano-structures in preventing the spread of coronavirus in a shorter time. This study surveyed the effect of three nano-perovskite structures (SrTiO3, CaTiO3, and BaTiO3), a cutting-edge group of perovskite materials with outstanding properties on coronavirus. Various computational parameters evaluate the effectiveness of these structures. Results of the simulation indicated that SrTiO3 performs better in SARS-CoV-2 suppression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA