Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Exp Brain Res ; 242(5): 1047-1060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467759

RESUMO

Electrotactile stimulation through matrix electrodes is a promising technology to restore high-resolution tactile feedback in extended reality applications. One of the fundamental tactile effects that should be simulated is the change in the size of the contact between the finger and a virtual object. The present study investigated how participants perceive the increase of stimulation area when stimulating the index finger using static or dynamic (moving) stimuli produced by activating 1 to 6 electrode pads. To assess the ability to interpret the stimulation from the natural cues (natural decoding), without any prior training, the participants were instructed to draw the size of the stimulated area and identify the size difference when comparing two consecutive stimulations. To investigate if other "non-natural" cues can improve the size estimation, the participants were asked to enumerate the number of active pads following a training protocol. The results demonstrated that participants could perceive the change in size without prior training (e.g., the estimated area correlated with the stimulated area, p < 0.001; ≥ two-pad difference recognized with > 80% success rate). However, natural decoding was also challenging, as the response area changed gradually and sometimes in complex patterns when increasing the number of active pads (e.g., four extra pads needed for the statistically significant difference). Nevertheless, by training the participants to utilize additional cues the limitations of natural perception could be compensated. After the training, the mismatch in the activated and estimated number of pads was less than one pad regardless of the stimulus size. Finally, introducing the movement of the stimulus substantially improved discrimination (e.g., 100% median success rate to recognize ≥ one-pad difference). The present study, therefore, provides insights into stimulation size perception, and practical guidelines on how to modulate pad activation to change the perceived size in static and dynamic scenarios.


Assuntos
Sinais (Psicologia) , Dedos , Percepção do Tato , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Dedos/fisiologia , Percepção do Tato/fisiologia , Estimulação Elétrica/métodos , Tato/fisiologia , Percepção de Tamanho/fisiologia , Estimulação Física
2.
Artif Organs ; 48(6): 626-635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149317

RESUMO

BACKGROUND: Electrotactile systems are compact interfaces that can be used to convey information through the skin by producing a range of haptic sensations. In many applications, however, the user needs to perceive and interpret haptic stimulation while being engaged in parallel activities. Developing methods that ensure reliable recognition of electrotactile messages despite additional cognitive load is, therefore, an important step for the practical application of electrotactile displays. METHODS: This study investigated if a simple strategy of repeating electrotactile messages can improve message identification during multitasking. Ten participants identified 36 spatiotemporal electrotactile messages delivered through a 3 × 2 pad-matrix electrode placed on the torso while performing a concomitant cognitive task in three conditions: the messages were presented once (No-REP), and each message was repeated three (REP3) and five (REP5) times. The main outcome measure was the success rate (SR) of message identification. RESULTS: During multitasking, in the No-REP condition, the SR (median (IQR)) dropped to 56.25% (22.62%), demonstrating that the cognitive task decreased performance. However, the SR significantly improved with message repetitions, reaching 72.92% (21.87%) and 81.25% (18.66%) in REP3 and REP5 conditions respectively, without a statistically significant difference between REP3 and REP5. CONCLUSIONS: Multitasking affected the efficacy of haptic communication, but message repetition was shown to be an effective strategy for improving performance. Additionally, only three repetitions were enough, as an additional increase in the duration of message transmission (5 repetitions) did not lead to further improvement. This study is an important step toward delivering electrotactile communication that can cope with the demands of real-world applications.


Assuntos
Cognição , Eletrodos , Tato , Humanos , Masculino , Cognição/fisiologia , Feminino , Tato/fisiologia , Adulto Jovem , Adulto , Desenho de Equipamento
3.
IEEE Trans Haptics ; 16(4): 748-759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37801385

RESUMO

Electrotactile stimulation can be an attractive technology to restore tactile feedback in different application scenarios (e.g., virtual and augmented reality, tele-manipulation). This technology allows designing compact solutions with no mechanical elements that can integrate a high-density matrix of stimulation points. The present study introduced four novel multi-pad finger-electrode designs with different arrangements (two matrix and two circular) and shapes of active pads (producing sensation) and reference pads (ideally, no sensation produced below the pad). The electrodes were used to investigate the subjects' ability to spatially discriminate active pads within phalanges individually (6-9 pads) as well as across the full finger (18-19 pads). The tests were conducted in 12 subjects and the results showed that all designs led to high success rates when applied to the fingertip (70-81%). When tested on the full finger, the matrix and circular designs were characterized with similar performance (54-57%), and when the phalanges were analyzed individually, the spatial discrimination was best at the fingertip. Additionally, new approaches for faster amplitude calibration were proposed and tested, demonstrating that calibration duration can be reduced by approximately 40% compared to the standard approach of calibrating single pads individually. Finally, discrimination tests of dynamic tactile patterns were conducted using circular and matrix designs on the fingertip and full finger, respectively. The tests showed that the different patterns generated by the two arrangements could be clearly discriminated, especially in the case of full-finger matrix-style patterns. The present study, therefore, provides several important insights that are relevant when delivering tactile feedback to the finger using an electrotactile interface.


Assuntos
Percepção do Tato , Humanos , Percepção do Tato/fisiologia , Estimulação Elétrica/métodos , Tato/fisiologia , Dedos/fisiologia , Eletrodos
4.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236758

RESUMO

Electrotactile stimulation is a technology that reproducibly elicits tactile sensations and can be used as an alternative channel to communicate information to the user. The presented work is a part of an effort to develop this technology into an unobtrusive communication tool for first responders. In this study, the aim was to compare the success rate (SR) between discriminating stimulation at six spatial locations (static encoding) and recognizing six spatio-temporal patterns where pads are activated sequentially in a predetermined order (dynamic encoding). Additionally, a procedure for a fast amplitude calibration, that includes a semi-automated initialization and an optional manual adjustment, was employed and evaluated. Twenty subjects, including twelve first responders, participated in the study. The electrode comprising the 3 × 2 matrix of pads was placed on the lateral torso. The results showed that high SRs could be achieved for both types of message encoding after a short learning phase; however, the dynamic approach led to a statistically significant improvement in messages recognition (SR of 93.3%), compared to static stimulation (SR of 83.3%). The proposed calibration procedure was also effective since in 83.8% of the cases the subjects did not need to adjust the stimulation amplitude manually.


Assuntos
Tronco , Tato , Calibragem , Comunicação , Estimulação Elétrica/métodos , Eletrodos , Humanos , Tato/fisiologia
5.
Artif Organs ; 46(10): 2044-2054, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35712803

RESUMO

BACKGROUND: Tactile stimulation can be used to convey information to a user in different scenarios while avoiding overloading other senses. Tactile messages can be transmitted as spatial patterns, potentially allowing for a high information throughput. The aim of the present study was to design and test different encoding schemes to determine the best approach for conveying spatial patterns. METHODS: Encoding schemes with simultaneous (SIM) and sequential pad activation (SEQ) were evaluated, including four SEQ variants designed to potentially facilitate the recognition. In SEQ-col and SEQ-row, the column and row of the activated pad were signified using different frequencies, while SEQ-all and SEQ-all-fast included the activation of all pads where those belonging to the pattern were indicated by changes in frequency (ON pads). The success rate (SR) of the pattern identification and the response time were quantified in 15 participants who recognized 20 patterns delivered through a 3 × 2 pad matrix placed on the lateral torso. RESULTS: SIM was not a feasible method to present the patterns (median, 15%; IQR, 5%). The SR improved with SEQ (median, 60%; IQR, 20%) and further increased with additional cues, particularly with SEQ-row (median, 78.3%; IQR, 23.3%) and SEQ-all (median, 96.7%; IQR, 5%). Importantly, the stimulation time of SEQ-all could be decreased without a substantial drop in accuracy (SEQ-all-fast: median, 89.2%; IQR, 19.2%). CONCLUSIONS: The spatiotemporal stimulation with sequential activation of all pads (SEQ-all) seems to be the method of choice when conveying tactile messages as spatial patterns. This is an important outcome for increasing the information bandwidth of communication through the tactile channel.


Assuntos
Percepção do Tato , Tato , Estimulação Elétrica , Eletrodos , Humanos , Pele , Tronco , Tato/fisiologia , Percepção do Tato/fisiologia
6.
Artif Organs ; 46(10): 2034-2043, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35704435

RESUMO

BACKGROUND: Providing real-time haptic feedback is an important, but still not sufficiently explored aspect of the use of supernumerary robotic limbs (SRLs). We present a multi-pad electrode for conveying multi-modal proprioceptive and sensory information from SRL to the user's thigh and propose a method for stimuli calibration. METHODS: Within two pilot tests, we investigated return electrode configuration and active electrode discrimination in three healthy subjects to select the appropriate electrode pad topology. Based on the obtained results and anthropometric data from the literature, the electrode was designed to have three branches of 10 pads and two additional pads that can be displaced over/under the electrode branches. The electrode was designed to be connected to the stimulator that allows full multiplexing so that specific branches can serve as a common return electrode. To define the procedure for application of this system, the sensation, localization, and discomfort thresholds applicable for the novel electrode were determined and analyzed in 10 subjects. RESULTS: The results showed no overlaps between the three thresholds for individual pads, with significantly different average values, suggesting that the selected electrode positioning and design provide a good active range of useful current amplitude. The results of the subsequent analysis suggested that the stimuli intensity level of 200% of the sensation threshold is the most probable value of the localization threshold. Furthermore, this level ensures a low chance (i.e., 0.7%) of reaching the discomfort. CONCLUSIONS: We believe that envisioned electrotactile system could serve as a high bandwidth feedback channel that can be easily set up to provide proprioceptive and sensory feedback from supernumerary limbs.


Assuntos
Procedimentos Cirúrgicos Robóticos , Estimulação Elétrica , Eletrodos , Retroalimentação , Retroalimentação Sensorial , Humanos , Tato
7.
IEEE Trans Haptics ; 15(2): 255-266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995193

RESUMO

Development of haptic interfaces to enrich augmented and virtual reality with the sense of touch is the next frontier for technological advancement of these systems. Among available technologies, electrotactile stimulation enables design of high-density interfaces that can provide natural-like sensation of touch in interaction with virtual objects. The present study investigates the human perception of electrotactile sensations on fingertips, focusing on the sensation localization in function of the size and position of reference electrode. Ten healthy subjects participated in the study, with the task to mark the sensations elicited by stimulating the index fingertip using an 8-pad electrode. The test systematically explored several configurations of the active (position) and reference (position and size) electrode pads. The results indicated that there was a spreading of perceived sensations across the fingertip, but that they were mostly localized below the active pad. The position and size of the reference electrode were shown to affect the location of the perceived sensations, which can potentially be exploited as an additional parameter to modulate the feedback. The present study demonstrates that the fingertip is a promising target for the delivery of high-resolution feedback.


Assuntos
Dedos , Percepção do Tato , Estimulação Elétrica/métodos , Eletrodos , Dedos/fisiologia , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34460377

RESUMO

We present a hand functions assessment system (BEAGLE) for kinematic tracking of hand and finger movements, envisioned as a technology-mediated rehabilitation tool. The system is custom-designed for fast and easy placement on an impaired hand (spastic or flaccid), featuring inertial sensors integrated into simple finger caps and a hand strap. An algorithm for a range of motion (ROM) estimation was implemented to provide an objective assessment of hand functions. The efficacy and feasibility of the BEAGLE system were examined in a pilot clinical study performed with ten stroke survivors in the subacute phase. Participants received therapy within two consecutive intensity-matched rehabilitation cycles. The first consisted of conventional therapy, while the second involved a combination of conventional therapy and advanced functional electrical stimulation. Assessments were performed before and after each phase. These included BEAGLE estimates of active voluntary ROM for wrist and various digits, as well as two referent clinical measures for hand functions assessment, Fugl-Meyer and Action Research Arm Test. The results indicate that the ROM assessments can detect change with sensitivity comparable to the standardized clinical scales. Statistically significant changes between the beginning and the end of the second cycle existed in all observed measures, whereas none of these measurements showed a statistically significant improvement in the first therapy cycle. The noted usability metrics indicate that the BEAGLE could be integrated into the rehabilitation workflow in a clinical environment.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Dedos , Mãos , Humanos , Recuperação de Função Fisiológica , Resultado do Tratamento
9.
Healthcare (Basel) ; 9(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925814

RESUMO

Functional electrical stimulation (FES) is used for treating foot drop by delivering electrical pulses to the anterior tibialis muscle during the swing phase of gait. This treatment requires that a patient can walk, which is mostly possible in the later phases of rehabilitation. In the early phase of recovery, the therapy conventionally consists of stretching exercises, and less commonly of FES delivered cyclically. Nevertheless, both approaches minimize patient engagement, which is inconsistent with recent findings that the full rehabilitation potential could be achieved by an active psycho-physical engagement of the patient during physical therapy. Following this notion, we proposed smart protocols whereby the patient sits and ankle movements are FES-induced by self-control. In six smart protocols, movements of the paretic ankle were governed by the non-paretic ankle with different control strategies, while in the seventh voluntary movements of the paretic ankle were used for stimulation triggering. One stroke survivor in the acute phase of recovery participated in the study. During the therapy, the patient's voluntary ankle range of motion increased and reached the value of normal gait after 15 sessions. Statistical analysis did not reveal the differences between the protocols in FES-induced movements.

10.
Appl Bionics Biomech ; 2019: 9298758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001360

RESUMO

The main drawback of the commercially available myoelectric hand prostheses is the absence of somatosensory feedback. We recently developed a feedback interface for multiple degrees of freedom myoelectric prosthesis that allows proprioceptive and sensory information (i.e., grasping force) to be transmitted to the wearer instantaneously. High information bandwidth is achieved through intelligent control of spatiotemporal distribution of electrical pulses over a custom-designed electrode array. As electrotactile sensations are location-dependent and the developed interface requires that electrical stimuli are perceived to be of the same intensity on all locations, a calibration procedure is of high importance. The aim of this study was to gain more insight into the calibration procedure and optimize this process by leveraging a priori knowledge. For this purpose, we conducted a study with 9 able-bodied subjects performing 10 sessions of the array electrode calibration. Based on the collected data, we optimized and simplified the calibration procedure by adapting the initial (baseline) amplitude values in the calibration algorithm. The results suggest there is an individual pattern of stimulation amplitudes across 16 electrode pads for each subject, which is not affected by the initial amplitudes. Moreover, the number of user actions performed and the time needed for the calibration procedure are significantly reduced by the proposed methodology.

11.
NeuroRehabilitation ; 41(4): 791-800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29254111

RESUMO

BACKGROUND: Foot drop is common gait impairment after stroke. Functional electrical stimulation (FES) of the ankle dorsiflexor muscles during the swing phase of gait can help correcting foot drop. OBJECTIVE: To evaluate efficacy of additional novel FES system to conventional therapy in facilitating motor recovery in the lower extremities and improving walking ability after stroke. METHODS: Sixteen stroke patients were randomly allocated to the FES group (FES therapy plus conventional rehabilitation program) (n = 8), and control group (conventional rehabilitation program) n = 8. FES was delivered for 30 min during gait to induce ankle plantar and dorsiflexion. MAIN OUTCOME MEASURES: gait speed using 10 Meter Walk Test (10 MWT), Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS) and modified Barthel Index (MBI). RESULTS: Results showed a significant increase in gait speed in FES group (p < 0.001), higher than the minimal detected change. The FES group showed improvement in functional independence in the activities of daily living, motor recovery and gait performance. CONCLUSIONS: The findings suggest that novel FES therapy combined with conventional rehabilitation is more effective on walking speed, mobility of the lower extremity, balance disability and activities of daily living compared to a conventional rehabilitation program only.


Assuntos
Terapia por Estimulação Elétrica , Reabilitação do Acidente Vascular Cerebral , Articulação do Tornozelo/fisiologia , Marcha/fisiologia , Humanos , Velocidade de Caminhada/fisiologia
12.
Artif Organs ; 41(11): E166-E177, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29148131

RESUMO

The goal of this study was to investigate surface motor activation zones and their temporal variability using an advanced multi-pad functional electrical stimulation system. With this system motor responses are elicited through concurrent activation of electrode matrix pads collectively termed "virtual electrodes" (VEs) with appropriate stimulation parameters. We observed VEs used to produce selective wrist, finger, and thumb extension movements in 20 therapy sessions of 12 hemiplegic stroke patients. The VEs which produce these three selective movements were created manually on the ergonomic multi-pad electrode by experienced clinicians based on visual inspection of the muscle responses. Individual results indicated that changes in VE configuration were required each session for all patients and that overlap in joint movements was evident between some VEs. However, by analyzing group data, we defined the probability distribution over the electrode surface for the three VEs of interest. Furthermore, through Bayesian logic we obtained preferred stimulation zones that are in accordance with our previously reported heuristically obtained results. We have also analyzed the number of active pads and stimulation amplitudes for these three VEs. Presented results provide a basis for an automated electrode calibration algorithm built on a priori knowledge or the starting point for manual selection of stimulation points.


Assuntos
Terapia por Estimulação Elétrica/métodos , Dedos/inervação , Hemiplegia/reabilitação , Atividade Motora , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Polegar/inervação , Punho/inervação , Adulto , Idoso , Algoritmos , Teorema de Bayes , Fenômenos Biomecânicos , Terapia por Estimulação Elétrica/instrumentação , Desenho de Equipamento , Feminino , Hemiplegia/diagnóstico , Hemiplegia/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/instrumentação , Fatores de Tempo , Resultado do Tratamento
13.
J Neuroeng Rehabil ; 14(1): 66, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673311

RESUMO

BACKGROUND: Functional electrical stimulation (FES) can be applied as an assistive and therapeutic aid in the rehabilitation of foot drop. Transcutaneous multi-pad electrodes can increase the selectivity of stimulation; however, shaping the stimulation electrode becomes increasingly complex with an increasing number of possible stimulation sites. We described and tested a novel decision support system (DSS) to facilitate the process of multi-pad stimulation electrode shaping. The DSS is part of a system for drop foot treatment that comprises a custom-designed multi-pad electrode, an electrical stimulator, and an inertial measurement unit. METHODS: The system was tested in ten stroke survivors (3-96 months post stroke) with foot drop over 20 daily sessions. The DSS output suggested stimulation pads and parameters based on muscle twitch responses to short stimulus trains. The DSS ranked combinations of pads and current amplitudes based on a novel measurement of the quality of the induced movement and classified them based on the movement direction (dorsiflexion, plantar flexion, eversion and inversion) of the paretic foot. The efficacy of the DSS in providing satisfactory pad-current amplitude choices for shaping the stimulation electrode was evaluated by trained clinicians. The range of paretic foot motion was used as a quality indicator for the chosen patterns. RESULTS: The results suggest that the DSS output was highly effective in creating optimized FES patterns. The position and number of pads included showed pronounced inter-patient and inter-session variability; however, zones for inducing dorsiflexion and plantar flexion within the multi-pad electrode were clearly separated. The range of motion achieved with FES was significantly greater than the corresponding active range of motion (p < 0.05) during the first three weeks of therapy. CONCLUSIONS: The proposed DSS in combination with a custom multi-pad electrode design covering the branches of peroneal and tibial nerves proved to be an effective tool for producing both the dorsiflexion and plantar flexion of a paretic foot. The results support the use of multi-pad electrode technology in combination with automatic electrode shaping algorithms for the rehabilitation of foot drop. TRIAL REGISTRATION: This study was registered at the Current Controlled Trials website with ClinicalTrials.gov ID NCT02729636 on March 29, 2016.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Terapia por Estimulação Elétrica/instrumentação , Eletrodos , Transtornos Neurológicos da Marcha/terapia , Idoso , Desenho de Equipamento , Feminino , Pé/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Paresia/reabilitação , Nervo Fibular , Amplitude de Movimento Articular , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Nervo Tibial
14.
Eur J Transl Myol ; 26(2): 6059, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27478575

RESUMO

The purpose of this study was to examine surface motor activation zones for wrist, fingers and thumb extension movements and their temporal change during 20 therapy sessions using advanced multi-pad functional electrical stimulation system. Results from four hemiplegic patients indicate that certain zones have higher probability of eliciting each of the target movements. However, mutual overlap and variations of the zones are present not just between the subjects, but also on the intrasubject level, reflected through these session to session transformations of the selected virtual electrodes. The obtained results could be used as a priori knowledge for semi-automated optimization algorithm and could shorten the time required for calibration of the multi-pad electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA