Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233267

RESUMO

Wood decay fungi (WDF) are a well-known source of enzymes and metabolites which have applications in numerous fields, including myco-remediation. Pharmaceuticals are becoming more problematic as environmental water pollutants due to their widespread use. In this study, Bjerkandera adusta, Ganoderma resinaceum, Perenniporia fraxinea, Perenniporia meridionalis and Trametes gibbosa were chosen from WDF strains maintained in MicUNIPV (the fungal research collection of the University of Pavia) to test their potential to degrade pharmaceuticals. The degradation potential was tested in spiked culture medium on diclofenac, paracetamol and ketoprofen, three of the most common pharmaceuticals, and irbesartan, a particularly difficult molecule to degrade. G. resinaceum and P. fraxinea were found to be the most effective at degradation, achieving 38% and 52% (24 h) and 72% and 49% (7 d) degradations of diclofenac, 25% and 73% (24 h) and 100% (7 d) degradations of paracetamol and 19% and 31% (24 h) and 64% and 67% (7 d) degradations of ketoprofen, respectively. Irbesartan was not affected by fungal activity. The two most active fungi, G. resinaceum and P. fraxinea, were tested in a second experiment in discharge wastewater collected from two different wastewater treatment plants in northern Italy. A high degradation was found in azithromycin, clarithromycin and sulfametoxazole (from 70% up to 100% in 7 days).

2.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744613

RESUMO

In urban wastewater treatment plants, bacteria lead the biological component of the depuration process, but the microbial community is also rich in fungi (mainly molds, yeasts and pseudo-yeasts), whose taxonomical diversity and relative frequency depend on several factors, e.g., quality of wastewater input, climate, seasonality, and depuration stage. By joining morphological and molecular identification, we investigated the fungal diversity in two different plants for the urban wastewater treatment in the suburbs of the two major cities in Lombardia, the core of industrial and commercial activities in Italy. This study presents a comparison of the fungal diversity across the depuration stages by applying the concepts of α-, ß- and ζ-diversity. Eurotiales (mainly with Aspergillus and Penicillium), Trichosporonales (Trichosporon sensu lato), Saccharomycetales (mainly with Geotrichum) and Hypocreales (mainly with Fusarium and Trichoderma) are the most represented fungal orders and genera in all the stages and both the plants. The two plants show different trends in α-, ß- and ζ-diversity, despite the fact that they all share a crash during the secondary sedimentation and turnover across the depuration stages. This study provides an insight on which taxa potentially contribute to each depuration stage and/or keep viable propagules in sludges after the collection from the external environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA