Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 20(6): e1012290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861571

RESUMO

Taï Forest virus (TAFV) is a negative-sense RNA virus in the Filoviridae family. TAFV has caused only a single human infection, but several disease outbreaks in chimpanzees have been linked to this virus. Limited research has been done on this human-pathogenic virus. We sought to establish an animal model to assess TAFV disease progression and pathogenicity at our facility. We had access to two different viral stock preparations from different institutions, both originating from the single human case. Type I interferon receptor knockout mice were inoculated with TAFV stock 1 or stock 2 by the intraperitoneal route. Inoculation resulted in 100% survival with no disease regardless of viral stock preparation or infectious dose. Next, cynomolgus macaques were inoculated with TAFV stock 1 or stock 2. Inoculation with TAFV stock 1 resulted in 100% survival and robust TAFV glycoprotein-specific IgG responses including neutralizing antibodies. In contrast, macaques infected with TAFV stock 2 developed disease and were euthanized 8-11 days after infection exhibiting viremia, thrombocytopenia, and increased inflammatory mediators identified by transcriptional analysis. Histopathologic analysis of tissue samples collected at necropsy confirmed classic filovirus disease in numerous organs. Genomic differences in both stock preparations were mapped to several viral genes which may have contributed to disease severity. Taken together, we demonstrate that infection with the two TAFV stocks resulted in no disease in mice and opposing disease phenotypes in cynomolgus macaques, highlighting the impact of viral stock propagation on pathogenicity in animal models.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis , Camundongos Knockout , Animais , Camundongos , Humanos , Replicação Viral , Infecções por Alphavirus/virologia , Infecções por Alphavirus/patologia , Receptor de Interferon alfa e beta/genética
2.
Front Immunol ; 15: 1408212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887303

RESUMO

Introduction: Varicella zoster virus (VZV) causes varicella and can reactivate as herpes zoster, and both diseases present a significant burden worldwide. However, the mechanisms by which VZV establishes latency in the sensory ganglia and disseminates to these sites remain unclear. Methods: We combined a single-cell sequencing approach and a well-established rhesus macaque experimental model using Simian varicella virus (SVV), which recapitulates the VZV infection in humans, to define the acute immune response to SVV in the lung as well as compare the transcriptome of infected and bystander lung-resident T cells and macrophages. Results and discussion: Our analysis showed a decrease in the frequency of alveolar macrophages concomitant with an increase in that of infiltrating macrophages expressing antiviral genes as well as proliferating T cells, effector CD8 T cells, and T cells expressing granzyme A (GZMA) shortly after infection. Moreover, infected T cells harbored higher numbers of viral transcripts compared to infected macrophages. Furthermore, genes associated with cellular metabolism (glycolysis and oxidative phosphorylation) showed differential expression in infected cells, suggesting adaptations to support viral replication. Overall, these data suggest that SVV infection remodels the transcriptome of bystander and infected lung-resident T cells and macrophages.


Assuntos
Pulmão , Macaca mulatta , Animais , Pulmão/imunologia , Pulmão/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Transcriptoma , Linfócitos T/imunologia , Varicellovirus/fisiologia , Varicellovirus/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Modelos Animais de Doenças , Análise de Célula Única
3.
Breastfeed Med ; 18(8): 626-630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37615569

RESUMO

Introduction: Although safety data demonstrated the efficacy and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination for all individuals over 6 months of age, including pregnant and breastfeeding individuals, optimal treatment courses for symptomatic pregnant and lactating individuals infected with SARS-CoV-2 remain to be defined. Case Description: A coronavirus disease 2019 (COVID-19)-vaccinated breastfeeding woman received anti-SARS-CoV-2 monoclonal antibody treatment casirivimab-imdevimab 5 days after diagnosis of a symptomatic breakthrough SARS-CoV-2 infection. Results and Conclusions: The patient did not present with obvious defects in innate or adaptive cellular subsets, but compared with controls had minimal maternal antibody response to recommended pregnancy vaccinations including SARS-CoV-2 and tetanus, diphtheria, pertussis (TDaP). The outcome of the monoclonal antibody infusion treatment was favorable as it transiently increased SARS-CoV-2 antibody titers in plasma and human milk compartments.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Gravidez , Humanos , Aleitamento Materno , Lactação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais
4.
J Infect Dis ; 228(Suppl 7): S648-S659, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37469133

RESUMO

BACKGROUND: Ebolaviruses Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) cause severe human disease, which may be accompanied by hemorrhagic syndrome, with high case fatality rates. Monovalent vaccines do not offer cross-protection against these viruses whose endemic areas overlap. Therefore, development of a panebolavirus vaccine is a priority. As a vaccine vector, human parainfluenza virus type 3 (HPIV3) has the advantages of needle-free administration and induction of both systemic and local mucosal antibody responses in the respiratory tract. METHODS: To minimize the antivector immunity, genes encoding the HPIV3 envelope proteins F and HN were removed from the vaccine constructs, resulting in expression of only the ebolavirus envelope protein-glycoprotein. These second-generation vaccine constructs were used to develop a combination vaccine against EBOV, SUDV, and BDBV. RESULTS: A single intranasal vaccination of guinea pigs or ferrets with the trivalent combination vaccine elicited humoral responses to each of the targeted ebolaviruses, including binding and neutralizing antibodies, as well as Fc-mediated effector functions. This vaccine protected animals from death and disease caused by lethal challenges with EBOV, SUDV, or BDBV. CONCLUSIONS: The combination vaccine elicited protection that was comparable to that induced by the monovalent vaccines, thus demonstrating the value of this combination trivalent vaccine.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Cobaias , Anticorpos Antivirais , Furões , Anticorpos Neutralizantes , Vacinas Combinadas
5.
Emerg Microbes Infect ; 12(2): 2239950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470396

RESUMO

Taï Forest virus (TAFV) is a lesser-known ebolavirus that causes lethal infections in chimpanzees and is responsible for a single human case. Limited research has been done on this human pathogen; however, with the recent emergence of filoviruses in West Africa, further investigation and countermeasure development against this virus is warranted. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the TAFV glycoprotein as the viral antigen and assessed it for protective efficacy in nonhuman primates (NHPs). Following a single high-dose vaccination, NHPs developed antigen-specific binding and neutralizing antibodies as well as modest T cell responses. Importantly, all vaccinated NHPs were uniformly protected from disease after lethal TAFV challenge while the naïve control group succumbed to the disease. Histopathologic lesions consistent with filovirus disease were present in control NHPs but were not observed in vaccinated NHPs. Transcriptional analysis of whole blood samples obtained after vaccination and challenge was performed to gain insight into molecular underpinnings conferring protection. Differentially expressed genes (DEG) detected 7 days post-vaccination were enriched to processes associated with innate immunity and antiviral responses. Only a small number of DEG was detected in vaccinated NHPs post-challenge while over 1,000 DEG were detected in control NHPs at end-stage disease which mapped to gene ontology terms indicative of defense responses and inflammation. Taken together, this data demonstrates the effective single-dose protection of the VSV-TAFV vaccine, and its potential for use in outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Vacinas Virais , Animais , Humanos , Macaca fascicularis , Anticorpos Antivirais , Florestas
6.
Biol Res Nurs ; 25(4): 505-515, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36869766

RESUMO

OBJECTIVE: A 6-month longitudinal surveillance study of asymptomatic healthcare providers (HCP) was carried out at a large urban academic medical center in the United States to assess whether their job occupation with higher exposure risks to SARS-CoV-2 would equate with higher risk of contracting COVID-19 at the beginning of the pandemic before COVID-19 vaccines were available. METHODS: A longitudinal cohort study design was used to collect and analyze immunological and virological monitoring data and self-report survey assessments of personal protective equipment (PPE) availability, adherence to infection control guidelines, and time spent on COVID-19 wards. RESULTS: Among 289 eligible participants, SARS-CoV-2 exposure risk was high with 48-69% participants working in COVID-19 units and more than 30% of them caring for COVID-19 patients. However, the seroconversion rate was low with only 2.1% of participants developing humoral or cellular immunity against SARS-CoV-2. CONCLUSION: Our study findings suggest that, for this HCP cohort working at a large urban academic medical center, a low incidence of SARS-CoV-2 infection could be maintained under conditions of strict infection prevention protocols and reliable PPE availability.


Assuntos
COVID-19 , Humanos , Estados Unidos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Estudos Longitudinais , Soroconversão , Pessoal de Saúde
8.
bioRxiv ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36482972

RESUMO

Background: Infection during pregnancy can result in adverse outcomes for both pregnant persons and offspring. Maternal vaccination is an effective mechanism to protect both mother and neonate into post-partum. However, our understanding of passive transfer of antibodies elicited by maternal SARS-CoV-2 mRNA vaccination during pregnancy remains incomplete. Objective: We aimed to evaluate the antibody responses engendered by maternal SARS-CoV-2 vaccination following initial and booster doses in maternal circulation and breastmilk to better understand passive immunization of the newborn. Study Design: We collected longitudinal blood samples from 121 pregnant women who received SARS-CoV-2 mRNA vaccines spanning from early gestation to delivery followed by collection of blood samples and breastmilk between delivery and 12 months post-partum. During the study, 70% of the participants also received a booster post-partum. Paired maternal plasma, breastmilk, umbilical cord plasma, and newborn plasma samples were tested via enzyme-linked immunosorbent assays (ELISA) to evaluate SARS-CoV-2 specific IgG antibody levels. Results: Vaccine-elicited maternal antibodies were detected in both cord blood and newborn blood, albeit at lower levels than maternal circulation, demonstrating transplacental passive immunization. Booster vaccination significantly increased spike specific IgG antibody titers in maternal plasma and breastmilk. Finally, SARS-CoV-2 specific IgG antibodies in newborn blood correlated negatively with days post initial maternal vaccine dose. Conclusion: Vaccine-induced maternal SARS-CoV-2 antibodies were passively transferred to the offspring in utero via the placenta and after birth via breastfeeding. Maternal booster vaccination, regardless of gestational age at maternal vaccination, significantly increased antibody levels in breastmilk and maternal plasma, indicating the importance of this additional dose to maximize passive protection against SARS-CoV-2 infection for neonates and infants until vaccination eligibility.

9.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287714

RESUMO

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Assuntos
COVID-19 , Vacinas Virais , Ratos , Camundongos , Humanos , Animais , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Amplamente Neutralizantes , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Ratos Sprague-Dawley , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas/genética , Camundongos Endogâmicos BALB C , Macaca mulatta , Anticorpos Antivirais
10.
Front Cell Infect Microbiol ; 12: 943587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959363

RESUMO

Ancestral RNA polymerase III (Pol III) is a multi-subunit polymerase responsible for transcription of short non-coding RNA, such as double-stranded short interspersed nuclear elements (SINEs). Although SINE ncRNAs are generally transcriptionally repressed, they can be induced in response to viral infections and can stimulate immune signaling pathways. Indeed, mutations in RNA Pol III have been associated with poor antiviral interferon response following infection with varicella zoster virus (VZV). In this study, we probed the role of Pol III transcripts in the detection and initial immune response to VZV by characterizing the transcriptional response following VZV infection of wild type A549 lung epithelial cells as well as A549 cells lacking specific RNA sensors MAVS and TLR3, or interferon-stimulated genes RNase L and PKR in presence or absence of functional RNA Pol III. Multiple components of the antiviral sensing and interferon signaling pathways were involved in restricting VZV replication in lung epithelial cells thus suggesting an innate defense system with built-in redundancy. In addition, RNA Pol III silencing altered the antiviral transcriptional program indicating that it plays an essential role in the sensing of VZV infection.


Assuntos
Herpesvirus Humano 3 , RNA Polimerase III , Antivirais , Células Epiteliais , Herpesvirus Humano 3/genética , Interferons , Pulmão , RNA , RNA Polimerase III/genética , Replicação Viral
11.
NPJ Vaccines ; 7(1): 83, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879311

RESUMO

A new vectored vaccine MVA-VLP-SUDV was generated against Sudan ebolavirus (SUDV) combining the advantages of the immunogenicity of a live attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). The vaccine expresses minimal components to generate self-assembling VLPs in the vaccinee: the envelope glycoprotein GP and the matrix protein VP40. Guinea pigs vaccinated with one dose of MVA-VLP-SUDV generated SUDV-specific binding and neutralizing antibody responses as well as Fc-mediated protective effects. These responses were boosted by a second vaccine dose. All vaccinated animals which received either one or two vaccine doses were protected from death and disease symptoms following challenge with a lethal dose of SUDV. These data demonstrate single dose protection and potency of the MVA-VLP platform for use in emergency situations to contain outbreaks.

12.
Front Immunol ; 13: 911951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844518

RESUMO

Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.


Assuntos
Alcoolismo , Doença Enxerto-Hospedeiro , Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/metabolismo , Epigênese Genética , Etanol/efeitos adversos , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Inflamação , Macrófagos , Monócitos
13.
PLoS Pathog ; 18(5): e1010518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584193

RESUMO

The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Glicoproteínas , Coelhos
14.
Nat Commun ; 13(1): 903, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173151

RESUMO

V2p and V2i antibodies (Abs) that are specific for epitopes in the V1V2 region of the HIV gp120 envelope (Env) do not effectively neutralize HIV but mediate Fc-dependent anti-viral activities that have been correlated with protection from, or control of HIV, SIV and SHIV infections. Here, we describe a novel molecular toolbox that allows the discrimination of antigenically and functionally distinct polyclonal V2 Ab responses. We identify different patterns of V2 Ab induction by SHIV infection and three separate vaccine regimens that aid in fine-tuning an optimized immunization protocol for inducing V2p and V2i Abs. We observe no, or weak and sporadic V2p and V2i Abs in non-vaccinated SHIV-infected NHPs, but strong V2p and/or V2i Ab responses after immunization with a V2-targeting vaccine protocol. The V2-focused vaccination is superior to both natural infection and to immunization with whole Env constructs for inducing functional V2p- and V2i-specific responses. Strikingly, levels of V2-directed Abs correlate inversely with Abs specific for peptides of V3 and C5. These data demonstrate that a V1V2-targeting vaccine has advantages over the imprecise targeting of SIV/SHIV infections and of whole Env-based immunization regimens for inducing a more focused functional V2p- and V2i-specific Ab response.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Feminino , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinação
15.
NPJ Vaccines ; 6(1): 91, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294728

RESUMO

The development of effective countermeasures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic, is a priority. We designed and produced ConVac, a replication-competent vesicular stomatitis virus (VSV) vaccine vector that expresses the S1 subunit of SARS-CoV-2 spike protein. We used golden Syrian hamsters as animal models of severe COVID-19 to test the efficacy of the ConVac vaccine. A single vaccine dose elicited high levels of SARS-CoV-2 specific binding and neutralizing antibodies; following intranasal challenge with SARS-CoV-2, animals were protected from weight loss and viral replication in the lungs. No enhanced pathology was observed in vaccinated animals upon challenge, but some inflammation was still detected. The data indicate rapid control of SARS-CoV-2 replication by the S1-based VSV-vectored SARS-CoV-2 ConVac vaccine.

16.
Sci Transl Med ; 13(602)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261800

RESUMO

Although substantial progress has been made with Ebola virus (EBOV) vaccine measures, the immune correlates of vaccine-mediated protection remain uncertain. Here, five mucosal vaccine vectors based on human and avian paramyxoviruses provided nonhuman primates with varying degrees of protection, despite expressing the same EBOV glycoprotein (GP) immunogen. Each vaccine produced antibody responses that differed in Fc-mediated functions and isotype composition, as well as in magnitude and coverage toward GP and its conformational and linear epitopes. Differences in the degree of protection and comprehensive characterization of the response afforded the opportunity to identify which features and functions were elevated in survivors and could therefore serve as vaccine correlates of protection. Pairwise network correlation analysis of 139 immune- and vaccine-related parameters was performed to demonstrate relationships with survival. Total GP-specific antibodies, as measured by biolayer interferometry, but not neutralizing IgG or IgA titers, correlated with survival. Fc-mediated functions and the amount of receptor binding domain antibodies were associated with improved survival outcomes, alluding to the protective mechanisms of these vaccines. Therefore, functional qualities of the antibody response, particularly Fc-mediated effects and GP specificity, rather than simply magnitude of the response, appear central to vaccine-induced protection against EBOV. The heterogeneity of the response profile between the vaccines indicates that each vaccine likely exhibits its own protective signature and the requirements for an efficacious EBOV vaccine are complex.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Especificidade de Anticorpos , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Primatas
17.
PLoS Pathog ; 17(3): e1009383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765062

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19 , Vírus da Raiva/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Humanos , Mesocricetus
18.
J Immunol ; 206(6): 1266-1283, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33536254

RESUMO

The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Produtos do Gene env/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Masculino , Fagocitose/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
19.
J Immunol ; 206(5): 999-1012, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472907

RESUMO

Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 µg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação/imunologia , Linhagem Celular , Epitopos/imunologia , Infecções por HIV/imunologia , Humanos , Imunização/métodos , Região Variável de Imunoglobulina/imunologia , Macaca mulatta/imunologia , Células THP-1/imunologia , Vacinação/métodos , Proteínas do Envelope Viral/imunologia
20.
NPJ Vaccines ; 5(1): 78, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922962

RESUMO

We introduce a new vaccine platform against Marburg virus (MARV) combining the advantages of the immunogenicity of a highly attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). Our vaccine, MVA-MARV-VLP, expresses the minimal components of MARV VLPs: the envelope glycoprotein GP and the matrix protein VP40. Electron microscopy confirmed self-assembly and budding of VLPs from infected cells. Prime/boost vaccination of guinea pigs with MVA-MARV-VLP-elicited MARV-specific binding and neutralizing antibody responses. Vaccination also induced Fc-mediated innate immune effector functions including activation of NK cells and antibody-dependent phagocytosis by neutrophils and monocytes. Inoculation of vaccinated animals with guinea pig-adapted MARV demonstrated 100% protection against death and disease with no viremia. Therefore, our vaccine platform, expressing two antigens resulting in assembly of VLPs in the native conformation in vaccinated hosts, can be used as a potent vaccine against MARV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA