Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Adv ; 9(50): eadh2858, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091389

RESUMO

Iron-sulfur (Fe-S) biogenesis requires multiprotein assembly systems, SUF and ISC, in most prokaryotes. M. tuberculosis (Mtb) encodes a complete SUF system, the depletion of which was bactericidal. The ISC operon is truncated to a single gene iscS (cysteine desulfurase), whose function remains uncertain. Here, we show that MtbΔiscS is bioenergetically deficient and hypersensitive to oxidative stress, antibiotics, and hypoxia. MtbΔiscS resisted killing by nitric oxide (NO). RNA sequencing indicates that IscS is important for expressing regulons of DosR and Fe-S-containing transcription factors, WhiB3 and SufR. Unlike wild-type Mtb, MtbΔiscS could not enter a stable persistent state, continued replicating in mice, and showed hypervirulence. The suf operon was overexpressed in MtbΔiscS during infection in a NO-dependent manner. Suppressing suf expression in MtbΔiscS either by CRISPR interference or upon infection in inducible NO-deficient mice arrests hypervirulence. Together, Mtb redesigned the ISC system to "fine-tune" the expression of SUF machinery for establishing persistence without causing detrimental disease in the host.


Assuntos
Metabolismo Energético , Mycobacterium tuberculosis , Animais , Camundongos , Metabolismo Energético/genética , Escherichia coli/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Virulência/genética
2.
Elife ; 122023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642294

RESUMO

Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.


Assuntos
Besouros , Mycobacterium tuberculosis , Animais , Camundongos , Mycobacterium tuberculosis/genética , Propionatos , Espécies Reativas de Oxigênio , Homeostase , Oxirredução , Mutagênese
3.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36222146

RESUMO

Restriction-modification (RM) systems are the most ubiquitous bacterial defence systems against bacteriophages. Using genome sequence data, we showed that RM systems are often shared among bacterial strains in a structured way. Examining the network of interconnections between bacterial strains within genera, we found that many strains share more RM systems than expected compared with a suitable null model. We also found that many genera have a larger than expected number of bacterial strains with unique RM systems. We used population dynamics models of closed and open phage-bacteria ecosystems to qualitatively understand the selection pressures that could lead to such network structures with enhanced overlap or uniqueness. In our models, we found that the phages impose a selection pressure that favours bacteria with greater number of RM systems, and higher overlap of RM systems with other strains, but in bacteria-dominated states, this is opposed by the increased cost-to-growth rate of these bacteria. Similar to what we observed in the genome data, we found that two distinct bacterial strategies emerge - strains either have a greater overlap than expected, or, at the other extreme, have unique RM systems. The former strategy appears to dominate when the repertoire of available RM systems is smaller but the average number of RM systems per strain is larger.


Assuntos
Bacteriófagos , Enzimas de Restrição-Modificação do DNA , Bactérias/genética , Bacteriófagos/genética , Enzimas de Restrição-Modificação do DNA/genética , Ecossistema , Dinâmica Populacional
4.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35776426

RESUMO

Bacterial genome organization is primarily driven by chromosomal replication from a single origin of replication. However, chromosomal rearrangements, which can disrupt such organization, are inevitable in nature. Long DNA repeats are major players mediating rearrangements, large and small, via homologous recombination. Since changes to genome organization affect bacterial fitness-and more so in fast-growing than slow-growing bacteria-and are under selection, it is reasonable to expect that genomic positioning of long DNA repeats is also under selection. To test this, we identified identical DNA repeats of at least 100 base pairs across ∼6,000 bacterial genomes and compared their distribution in fast- and slow-growing bacteria. We found that long identical DNA repeats are distributed in a non-random manner across bacterial genomes. Their distribution differs in the overall number, orientation, and proximity to the origin of replication, between fast- and slow-growing bacteria. We show that their positioning-which might arise from a combination of the processes that produce repeats and selection on rearrangements that recombination between repeat elements might cause-permits less disruption to the replication-dependent genome organization of bacteria compared with random suggesting it as a major constraint to positioning of long DNA repeats.


Assuntos
Replicação do DNA , Genoma Bacteriano , DNA , Replicação do DNA/genética , DNA Bacteriano/genética , Rearranjo Gênico , Genômica
5.
Redox Biol ; 46: 102062, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392160

RESUMO

The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood. Since NO damages iron-sulfur (Fe-S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe-S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe-4S cluster and promotes persistence of Mtb by mobilizing the Fe-S cluster biogenesis system; suf operon (Rv1460-Rv1466). Analysis of anaerobically purified SufR by UV-visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe-4S cluster. Atmospheric O2 and H2O2 gradually degrade the 4Fe-4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe-4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe-S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe-S cluster metabolism and bioenergetics.


Assuntos
Proteínas Ferro-Enxofre , Mycobacterium tuberculosis , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio , Proteínas Ferro-Enxofre/genética , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Óperon
6.
mSphere ; 5(1)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102945

RESUMO

The bacterium Escherichia coli can initiate replication in the absence of the replication initiator protein DnaA and/or the canonical origin of replication oriC in a ΔrnhA background. This phenomenon, which can be primed by R-loops, is called constitutive stable DNA replication (cSDR). Whether DNA replication during cSDR initiates in a stochastic manner through the length of the chromosome or at specific sites and how E. coli can find adaptations to loss of fitness caused by cSDR remain inadequately answered. We use laboratory evolution experiments of ΔrnhA-ΔdnaA strains followed by deep sequencing to show that DNA replication preferentially initiates within a broad region located ∼0.4 to 0.7 Mb clockwise of oriC. This region includes many bisulfite-sensitive sites, which have been previously defined as R-loop-forming regions, and includes a site containing sequence motifs that favor R-loop formation. Initiation from this region would result in head-on replication-transcription conflicts at rRNA loci. Inversions of these rRNA loci, which can partly resolve these conflicts, help the bacterium suppress the fitness defects of cSDR. These inversions partially restore the gene expression changes brought about by cSDR. The inversion, however, increases the possibility of conflicts at essential mRNA genes, which would utilize only a minuscule fraction of RNA polymerase molecules, most of which transcribe rRNA genes. Whether subsequent adaptive strategies would attempt to resolve these conflicts remains an open question.IMPORTANCE The bacterium E. coli can replicate its DNA even in the absence of the molecules that are required for canonical replication initiation. This often requires the formation of RNA-DNA hybrid structures and is referred to as constitutive stable DNA replication (cSDR). Where on the chromosome does cSDR initiate? We answer this question using laboratory evolution experiments and genomics and show that selection favors cSDR initiation predominantly at a region ∼0.6 Mb clockwise of oriC. Initiation from this site will result in more head-on collisions of DNA polymerase with RNA polymerase operating on rRNA loci. The bacterium adapts to this problem by inverting a region of the genome including several rRNA loci such that head-on collisions between the two polymerases are minimized. Understanding such evolutionary strategies in the context of cSDR can provide insights into the potential causes of resistance to antibiotics that target initiation of DNA replication.


Assuntos
DNA Helicases/genética , Replicação do DNA , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Transativadores/genética , DNA Bacteriano/genética , Evolução Molecular Direcionada , Genoma Bacteriano , Complexo de Reconhecimento de Origem/genética , Estruturas R-Loop/genética
7.
Sci Transl Med ; 11(518)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723039

RESUMO

The capacity of Mycobacterium tuberculosis (Mtb) to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in Mtb populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood. Here, we show that phagosomal acidification alters the redox physiology of Mtb to generate a population of replicating bacteria that display drug tolerance during infection. RNA sequencing of this redox-altered population revealed the involvement of iron-sulfur (Fe-S) cluster biogenesis, hydrogen sulfide (H2S) gas, and drug efflux pumps in antibiotic tolerance. The fraction of the pH- and redox-dependent tolerant population increased when Mtb infected macrophages with actively replicating HIV-1, suggesting that redox heterogeneity could contribute to high rates of TB therapy failure during HIV-TB coinfection. Pharmacological inhibition of phagosomal acidification by the antimalarial drug chloroquine (CQ) eradicated drug-tolerant Mtb, ameliorated lung pathology, and reduced postchemotherapeutic relapse in in vivo models. The pharmacological profile of CQ (C max and AUClast) exhibited no major drug-drug interaction when coadministered with first line anti-TB drugs in mice. Our data establish a link between phagosomal pH, redox metabolism, and drug tolerance in replicating Mtb and suggest repositioning of CQ to shorten TB therapy and achieve a relapse-free cure.


Assuntos
Farmacorresistência Bacteriana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ácidos , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Cisteína/metabolismo , Interações Medicamentosas , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Infecções por HIV/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução , Fagossomos/efeitos dos fármacos , Fagossomos/microbiologia , RNA-Seq , Recidiva , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA