Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
BJPsych Bull ; 47(6): 362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029786
3.
PLoS One ; 18(1): e0279875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662734

RESUMO

Bioluminescence imaging (BLI) of gene expression in live animals is a powerful method for monitoring development, tumor growth, infections, healing, and other progressive, long-term biological processes. BLI remains an effective approach for reducing the number of animals needed to monitor dynamic changes in gene activity because images can be captured repeatedly from the same animals. When examining these ongoing changes, it is sometimes necessary to remove rhythmic effects on the bioluminescence signal caused by the circadian clock's daily modulation of gene expression. Furthermore, BLI using freely moving animals remains limited because the standard procedures can alter normal behaviors. Another obstacle with conventional BLI of animals is that luciferin, the firefly luciferase substrate, is usually injected into mice that are then imaged while anesthetized. Unfortunately, the luciferase signal declines rapidly during imaging as luciferin is cleared from the body. Alternatively, mice are imaged after they are surgically implanted with a pump or connected to a tether to deliver luciferin, but stressors such as this surgery and anesthesia can alter physiology, behavior, and the actual gene expression being imaged. Consequently, we developed a strategy that minimizes animal exposure to stressors before and during sustained BLI of freely moving unanesthetized mice. This technique was effective when monitoring expression of the Per1 gene that serves in the circadian clock timing mechanism and was previously shown to produce circadian bioluminescence rhythms in live mice. We used hairless albino mice expressing luciferase that were allowed to drink luciferin and engage in normal behaviors during imaging with cooled electron-multiplying-CCD cameras. Computer-aided image selection was developed to measure signal intensity of individual mice each time they were in the same posture, thereby providing comparable measurements over long intervals. This imaging procedure, performed primarily during the animal's night, is compatible with entrainment of the mouse circadian timing system to the light cycle while allowing sampling at multi-day intervals to monitor long-term changes. When the circadian expression of a gene is known, this approach provides an effective alternative to imaging immobile anesthetized animals and can removing noise caused by circadian oscillations and body movements that can degrade data collected during long-term imaging studies.


Assuntos
Diagnóstico por Imagem , Luciferases de Vaga-Lume , Camundongos , Animais , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Expressão Gênica , Luciferinas , Medições Luminescentes/métodos
4.
Sci Transl Med ; 14(675): eabi4354, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516265

RESUMO

Immune-mediated bile duct epithelial injury and toxicity of retained hydrophobic bile acids drive disease progression in fibrosing cholangiopathies such as biliary atresia or primary sclerosing cholangitis. Emerging therapies include pharmacological agonists to farnesoid X receptor (FXR), the master regulator of hepatic synthesis, excretion, and intestinal reuptake of bile acids. Unraveling the mechanisms of action of pharmacological FXR agonists in the treatment of sclerosing cholangitis (SC), we found that intestinally restricted FXR activation effectively reduced bile acid pool size but did not improve the SC phenotype in MDR2-/- mice. In contrast, systemic FXR activation not only lowered bile acid synthesis but also suppressed proinflammatory cytokine production by liver-infiltrating inflammatory cells and blocked progression of hepatobiliary injury. The hepatoprotective activity was linked to suppressed production of IL1ß and TNFα by hepatic macrophages and inhibition of TH1/TH17 lymphocyte polarization. Deletion of FXR in myeloid cells caused aberrant TH1 and TH17 lymphocyte responses in diethoxycarbonyl-1,4-dihydrocollidine-induced SC and rendered these mice resistant to the anti-inflammatory and liver protective effects of systemic FXR agonist treatment. Pharmacological FXR activation reduced IL1ß and IFNγ production by liver- and blood-derived mononuclear cells from patients with fibrosing cholangiopathies. In conclusion, we demonstrate FXR to control the macrophage-TH1/17 axis, which is critically important for the progression of SC. Hepatic macrophages are cellular targets of systemic FXR agonist therapy for cholestatic liver disease.


Assuntos
Colangite Esclerosante , Camundongos , Animais , Colangite Esclerosante/tratamento farmacológico , Linfócitos T , Ácidos e Sais Biliares , Fígado , Macrófagos
5.
Hepatol Commun ; 6(10): 2702-2714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866580

RESUMO

Biliary atresia (BA) is a neonatal inflammatory cholangiopathy that requires surgical intervention by Kasai portoenterostomy to restore biliary drainage. Even with successful portoenterostomy, most patients diagnosed with BA progress to end-stage liver disease, necessitating a liver transplantation for survival. In the murine model of BA, rhesus rotavirus (RRV) infection of neonatal mice induces an inflammatory obstructive cholangiopathy that parallels human BA. The model is triggered by RRV viral protein (VP)4 binding to cholangiocyte cell-surface proteins. High mobility group box 1 (HMGB1) protein is a danger-associated molecular pattern that when released extracellularly moderates innate and adaptive immune response. In this study, we investigated how mutations in three RRV VP4-binding sites, RRVVP4-K187R (sialic acid-binding site), RRVVP4-D308A (integrin α2ß1-binding site), and RRVVP4-R446G (heat shock cognate 70 [Hsc70]-binding site), affects infection, HMGB1 release, and the murine model of BA. Newborn pups injected with RRVVP4-K187R and RRVVP4-D308A developed an obstruction within the extrahepatic bile duct similar to wild-type RRV, while those infected with RRVVP4-R446G remained patent. Infection with RRVVP4-R446G induced a lower level of HMGB1 release from cholangiocytes and in the serum of infected pups. RRV infection of HeLa cells lacking Hsc70 resulted in no HMGB1 release, while transfection with wild-type Hsc70 into HeLa Hsc70-deficient cells reestablished HMGB1 release, indicating a mechanistic role for Hsc70 in its release. Conclusion: Binding to Hsc70 contributes to HMGB1 release; therefore, Hsc70 potentially serves as a therapeutic target for BA.


Assuntos
Atresia Biliar , Infecções por Rotavirus , Rotavirus , Animais , Animais Recém-Nascidos , Atresia Biliar/etiologia , Sítios de Ligação , Modelos Animais de Doenças , Células HeLa , Humanos , Integrina alfa2beta1 , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico , Rotavirus/genética , Infecções por Rotavirus/metabolismo , Proteínas Virais
6.
BMC Womens Health ; 22(1): 37, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148773

RESUMO

BACKGROUND: Chronic pelvic pain (CPP) causes non-cyclical pelvic pain, period pain, fatigue and other painful symptoms. Current medical and surgical management strategies are often not sufficient to manage these symptoms and may lead to uptake of other therapies. AIMS: To determine the prevalence of allied health (AH) and complementary therapy (CM) use, the cost burden of these therapies and explore predictive factors for using allied health or complementary medicines. MATERIALS AND METHODS: An online cross-sectional questionnaire using the WERF EndoCost tool was undertaken between February to April 2017. People were eligible to participate in the survey if they were aged 18-45, living in Australia and had chronic pelvic pain. RESULTS: From 409 responses, 340/409 (83%) of respondents reported a diagnosis of endometriosis. One hundred and five (30%) women with self-reported endometriosis, and thirteen (18%) women with other forms of CPP saw at least one AH or CM practitioner in the previous two months, with physiotherapists and acupuncturists the most common. Women who accessed CM or AH services spent an average of $480.32 AUD in the previous two months. A positive correlation was found between education and number of AH or CM therapies accessed in the past two months (p < 0.001) and between income level and number of therapists (p = 0.028). CONCLUSIONS: Women with CPP commonly access AH and CM therapies, with a high out of pocket cost. The high cost and associations with income and education levels may warrant a change to policy to improve equitable access to these services.


Assuntos
Dor Crônica , Terapias Complementares , Endometriose , Austrália/epidemiologia , Dor Crônica/complicações , Dor Crônica/terapia , Terapias Complementares/efeitos adversos , Estudos Transversais , Endometriose/complicações , Endometriose/diagnóstico , Endometriose/terapia , Feminino , Humanos , Dor Pélvica/etiologia
7.
Mucosal Immunol ; 14(6): 1271-1281, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341502

RESUMO

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.


Assuntos
Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Fator de Transcrição Ikaros/genética , Alérgenos/imunologia , Animais , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Receptores CCR3/genética , Receptores CCR3/metabolismo , Transdução de Sinais
8.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34330753

RESUMO

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Assuntos
Cromatina/genética , Eosinófilos/metabolismo , Epigênese Genética/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética
9.
Blood Adv ; 5(9): 2385-2390, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33944896

RESUMO

Sickle cell anemia (SCA) results from an abnormal sickle hemoglobin (HbS). HbS polymerizes upon deoxygenation, resulting in red blood cell (RBC) sickling and membrane damage that cause vaso-occlusions and hemolysis. Sickle RBCs contain less adenosine triphosphate and more 2,3-diphosphoglycerate than normal RBCs, which allosterically reduces hemoglobin (Hb) oxygen (O2) affinity (ie, increases the partial pressure of oxygen at which hemoglobin is 50% saturated with oxygen [P50]), potentiating HbS polymerization. Herein, we tested the effect of investigational agent FT-4202, an RBC pyruvate kinase (PKR) activator, on RBC sickling and membrane damage by administering it to Berkeley SCA mice. Two-week oral FT-4202 administration was well tolerated, decreasing HbS P50 to levels similar to HbA and demonstrating beneficial biological effects. In FT-4202-treated animals, there was reduced sickling in vivo, demonstrated by fewer irreversibly sickled cells, and improved RBC deformability, assessed at varying shear stress. Controlled deoxygenation followed by reoxygenation of RBCs obtained from the blood of FT-4202-treated mice showed a shift in the point of sickling to a lower partial pressure of oxygen (pO2). This led to a nearly 30% increase in RBC survival and a 1.7g/dL increase in Hb level in the FT-4202-treated SCA mice. Overall, our results in SCA mice suggest that FT-4202 might be a potentially useful oral antisickling agent that warrants investigation in patients with SCA.


Assuntos
Anemia Falciforme , Hemoglobina Falciforme , Anemia Falciforme/tratamento farmacológico , Animais , Antidrepanocíticos , Eritrócitos Anormais , Humanos , Camundongos , Piruvato Quinase
10.
Crit Rev Oncog ; 26(4): 1-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35381144

RESUMO

Cancer and circadian rhythms are linked in several ways, through immunomodulatory, neuroendocrine, and metabolic pathways. The circadian timing system consists of interacting circadian clocks in organs throughout the body that contain cells endowed with self-sustaining molecular circadian oscillations. Circadian rhythms are spontaneously generated by specific transcription and translation feedback cycles. Cancer cells emerging from these rhythmic tissues are subjected to daily physiological rhythms imposed by the circadian system, and some transformed cells have their own intrinsic circadian clocks. The role of these circadian clock cells in cancer prevention and oncogenesis remains to be fully explored. Nevertheless, evidence suggests that new cancers are fostered by degradation of the circadian system's rhythmic properties. In contrast, circadian clocks within cancer cells might aid in their survival if they provide benefits such as an ability to synchronize with daily nutrient availability or circadian rhythms in immune cell activity. Here, we address new evidence challenging the simplicity of carcinogenesis models that depend solely on the importance of minimized cancer risk provided by well-aligned and robust circadian clocks in the body. The biology of cancer stem cells and the benefits they may receive from their own rhythmic and non-rhythmic expressions of core circadian clock genes are examined with a focus on gliomas and liver cancer stem cells, along with possibilities for timed medical interventions.


Assuntos
Relógios Circadianos , Carcinogênese/genética , Carcinogênese/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Fígado/metabolismo , Células-Tronco Neoplásicas
11.
Front Oncol ; 10: 627701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33718121

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.

12.
Dig Med Res ; 32020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615212

RESUMO

Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.

13.
Int J Dev Neurosci ; 75: 44-58, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059735

RESUMO

BACKGROUND: The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains the master circadian clock of the body and an unusually large number of cells expressing stem cell-related proteins. These seemingly undifferentiated cells may serve in entrainment of the SCN circadian clock to light cycles or allow it to undergo neural plasticity important for modifying its rhythmic output signals. These cells may also proliferate and differentiate into neurons or glia in response to episodic stimuli or developmental events requiring alterations in the SCN's control of physiology and behavior. PROBLEM: To characterize expression of stem cell related proteins in the SCN and the effects of stem-like cells on circadian rhythms. METHODS: Explant cultures of mouse SCN were maintained in medium designed to promote survival and growth of stem cells but not neuronal cells. Several stem cell marker proteins including SRY-box containing gene 2 (SOX2), nestin, vimentin, octamer-binding protein 4 (OCT4), and Musashi RNA-binding protein 2 (MSI2) were identified by immunocytochemistry in histological sections from adult mouse SCN and in cultures of microdissected SCN. A bioinformatics analysis located potential SCN targets of MSI2 and related RNA-binding proteins. RESULTS: Cells expressing stem cell markers proliferated in culture. Immunostained brain sections and bioinformatics supported the view that MSI2 regulates immature properties of SCN neurons, potentially providing flexibility in SCN neural circuits. Explant cultures had ongoing mitotic activity, indicated by proliferating-cell nuclear antigen, and extensive cell loss shown by propidium iodide staining. Cells positive for vasoactive intestinal polypeptide (VIP) that are highly enriched in the SCN were diminished in explant cultures. Despite neuronal cell loss, tissue remained viable for over 7 weeks in culture, as shown by bioluminescence imaging of explants prepared from SCN of Per1::luc transgenic mice. The circadian rhythm in SCN gene expression persisted in brain slice cultures in stem cell medium. Prominent, widespread expression of RNA-binding protein MSI2 supported the importance of posttranscriptional regulation in SCN functions and provided further evidence of stem-like cells. CONCLUSION: The results show that the SCN retains properties of immature neurons and these properties persist in culture conditions suitable for stem cells, where the SCN stem-like cells also proliferate. These properties may allow adaptive circadian rhythm adjustments. Further exploration should examine stem-like cells of the SCN in vivo, how they may affect circadian rhythms, and whether MSI2 serves as a master regulator of SCN stem-like properties.


Assuntos
Ritmo Circadiano/fisiologia , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Forma Celular/fisiologia , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Transgênicos , Nestina/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição SOXB1/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vimentina/metabolismo
14.
J Leukoc Biol ; 104(1): 185-193, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758095

RESUMO

The eosinophil (Eos) surface phenotype and activation state is altered after recruitment into tissues and after exposure to pro-inflammatory cytokines. In addition, distinct Eos functional subsets have been described, suggesting that tissue-specific responses for Eos contribute to organ homeostasis. Understanding the mechanisms by which Eos subsets achieve their tissue-specific identity is currently an unmet goal for the eosinophil research community. Publicly archived expression data can be used to answer original questions, test and generate new hypotheses, and serve as a launching point for experimental design. With these goals in mind, we investigated the effect of genetic background, culture methods, and tissue residency on murine Eos gene expression using publicly available, genome-wide expression data. Eos differentiated from cultures have a gene expression profile that is distinct from that of native homeostatic Eos; thus, researchers can repurpose published expression data to aid in selecting the appropriate culture method to study their gene of interest. In addition, we identified Eos lung- and gastrointestinal-specific transcriptomes, highlighting the profound effect of local tissue environment on gene expression in a terminally differentiated granulocyte even at homeostasis. Expanding the "toolbox" of Eos researchers to include public-data reuse can reduce redundancy, increase research efficiency, and lead to new biological insights.


Assuntos
Bases de Dados Genéticas , Eosinófilos , Estudo de Associação Genômica Ampla , Animais , Camundongos , Projetos de Pesquisa
15.
PLoS One ; 10(10): e0139655, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26439128

RESUMO

Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.


Assuntos
Fatores de Transcrição ARNTL/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Neurogênese/genética , Proteínas Circadianas Period/genética , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipocampo/citologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia
16.
PLoS One ; 10(3): e0122937, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826427

RESUMO

Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3-4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.


Assuntos
Ritmo Circadiano , Neurogênese , Animais , Diferenciação Celular , Ritmo Circadiano/efeitos dos fármacos , Colforsina/farmacologia , Meios de Cultura , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA