Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(7): 2586-2592, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362432

RESUMO

Chemically robust, functional porous materials are imperative for designing novel membranes for chemical separation and heterogeneous catalysts. Among the array of potential materials, zirconium (Zr)-based metal-organic frameworks (MOFs) have garnered considerable attention, and have been investigated for applications related to gas separation and storage, and catalysis. However, a significant challenge with Zr-MOFs lies in their processibility, particularly in achieving homogenous thin films and controlling functional anisotropy. The recent developments in MOF thin film fabrication methodologies do not yield a solution to achieve mild reaction condition growth of Zr-MOF thin films with epitaxial MOF-on-MOF geometry (i.e. functional anisotropy). In the current work, we have devised a straightforward methodology under room temperature conditions, which enables epitaxial, oriented MOF-on-MOF thin film growth. This achievement is accomplished through a stepwise self-assembly approach involving Zr nodes and linkers on a functionalized substrate. This de novo developed strategy of functionality design is demonstrated for UiO-66 (University of Oslo) type Zr-MOFs. We have demonstrated the precise placement of chemical functionalities within the thin film structure, allowing for controlled chemical diffusion and regulation of diffusion selectivity.

2.
Nat Commun ; 14(1): 2212, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072404

RESUMO

Transport diffusivity of molecules in a porous solid is constricted by the rate at which molecules move from one pore to the other, along the concentration gradient, i.e. by following Fickian diffusion. In heterogeneous porous materials, i.e. in the presence of pores of different sizes and chemical environments, diffusion rate and directionality remain tricky to estimate and adjust. In such a porous system, we have realized that molecular diffusion direction can be orthogonal to the concentration gradient. To experimentally determine this complex diffusion rate dependency and get insight of the microscopic diffusion pathway, we have designed a model nanoporous structure, metal-organic framework (MOF). In this model two chemically and geometrically distinct pore windows are spatially oriented by an epitaxial, layer-by-layer growth method. The specific design of the nanoporous channels and quantitative mass uptake rate measurements have indicated that the mass uptake is governed by the interpore diffusion along the direction orthogonal to the concentration gradient. This revelation allows chemically carving the nanopores, and accelerating the interpore diffusion and kinetic diffusion selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA