Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Coll Radiol ; 21(6S): S237-S248, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823947

RESUMO

This document summarizes the relevant literature for the selection of preprocedural imaging in three clinical scenarios in patients needing endovascular treatment or cardioversion of atrial fibrillation. These clinical scenarios include preprocedural imaging prior to radiofrequency ablation; prior to left atrial appendage occlusion; and prior to cardioversion. The appropriateness of imaging modalities as they apply to each clinical scenario is rated as usually appropriate, may be appropriate, and usually not appropriate to assist the selection of the most appropriate imaging modality in the corresponding clinical scenarios. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Assuntos
Fibrilação Atrial , Medicina Baseada em Evidências , Sociedades Médicas , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Humanos , Estados Unidos , Cuidados Pré-Operatórios/métodos , Cardioversão Elétrica/métodos , Átrios do Coração/diagnóstico por imagem , Apêndice Atrial/diagnóstico por imagem , Apêndice Atrial/cirurgia
2.
Npj Imaging ; 2(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706558

RESUMO

Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges - incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.

3.
JACC Cardiovasc Imaging ; 17(3): 248-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37632499

RESUMO

BACKGROUND: Recent studies suggest that quantitative cardiac magnetic resonance (CMR) may have more accuracy than qualitative CMR in coronary artery disease (CAD) diagnosis. However, the prognostic value of quantitative and qualitative CMR has not been compared systematically. OBJECTIVES: The objective was to conduct a systematic review and meta-analysis assessing the utility of qualitative and quantitative stress CMR in the prognosis of patients with known or suspected CAD. METHODS: A comprehensive search was performed through Embase, Scopus, Web of Science, and Medline. Studies that used qualitative vasodilator CMR or quantitative CMR assessments to compare the prognosis of patients with positive and negative CMR results were extracted. A meta-analysis was then performed to assess: 1) major adverse cardiovascular events (MACE) including cardiac death, nonfatal myocardial infarction (MI), unstable angina, and coronary revascularization; and 2) cardiac hard events defined as the composite of cardiac death and nonfatal MI. RESULTS: Forty-one studies with 38,030 patients were included in this systematic review. MACE occurred significantly more in patients with positive qualitative (HR: 3.86; 95% CI: 3.28-4.54) and quantitative (HR: 4.60; 95% CI: 1.60-13.21) CMR assessments. There was no significant difference between qualitative and quantitative CMR assessments in predicting MACE (P = 0.75). In studies with qualitative CMR assessment, cardiac hard events (OR: 7.21; 95% CI: 4.99-10.41), cardiac death (OR: 5.63; 95% CI: 2.46-12.92), nonfatal MI (OR: 7.46; 95% CI: 3.49-15.96), coronary revascularization (OR: 6.34; 95% CI: 3.42-1.75), and all-cause mortality (HR: 1.66; 95% CI: 1.12-2.47) were higher in patients with positive CMR. CONCLUSIONS: The presence of myocardial ischemia on CMR is associated with worse clinical outcomes in patients with known or suspected CAD. Both qualitative and quantitative stress CMR assessments are helpful tools for predicting clinical outcomes.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações , Morte , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Prognóstico , Medição de Risco
4.
J Med Imaging (Bellingham) ; 10(4): 044006, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37564098

RESUMO

Purpose: We aim to evaluate the performance of radiomic biopsy (RB), best-fit bounding box (BB), and a deep-learning-based segmentation method called no-new-U-Net (nnU-Net), compared to the standard full manual (FM) segmentation method for predicting benign and malignant lung nodules using a computed tomography (CT) radiomic machine learning model. Materials and Methods: A total of 188 CT scans of lung nodules from 2 institutions were used for our study. One radiologist identified and delineated all 188 lung nodules, whereas a second radiologist segmented a subset (n=20) of these nodules. Both radiologists employed FM and RB segmentation methods. BB segmentations were generated computationally from the FM segmentations. The nnU-Net, a deep-learning-based segmentation method, performed automatic nodule detection and segmentation. The time radiologists took to perform segmentations was recorded. Radiomic features were extracted from each segmentation method, and models to predict benign and malignant lung nodules were developed. The Kruskal-Wallis and DeLong tests were used to compare segmentation times and areas under the curve (AUC), respectively. Results: For the delineation of the FM, RB, and BB segmentations, the two radiologists required a median time (IQR) of 113 (54 to 251.5), 21 (9.25 to 38), and 16 (12 to 64.25) s, respectively (p=0.04). In dataset 1, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.964 (0.96 to 0.968), 0.985 (0.983 to 0.987), 0.961 (0.956 to 0.965), and 0.878 (0.869 to 0.888). In dataset 2, the mean AUC (95% CI) of the FM, RB, BB, and nnU-Net model were 0.717 (0.705 to 0.729), 0.919 (0.913 to 0.924), 0.699 (0.687 to 0.711), and 0.644 (0.632 to 0.657). Conclusion: Radiomic biopsy-based models outperformed FM and BB models in prediction of benign and malignant lung nodules in two independent datasets while deep-learning segmentation-based models performed similarly to FM and BB. RB could be a more efficient segmentation method, but further validation is needed.

5.
J Am Coll Radiol ; 20(5S): S285-S300, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236749

RESUMO

Noncerebral systemic arterial embolism, which can originate from cardiac and noncardiac sources, is an important cause of patient morbidity and mortality. When an embolic source dislodges, the resulting embolus can occlude a variety of peripheral and visceral arteries causing ischemia. Characteristic locations for noncerebral arterial occlusion include the upper extremities, abdominal viscera, and lower extremities. Ischemia in these regions can progress to tissue infarction resulting in limb amputation, bowel resection, or nephrectomy. Determining the source of arterial embolism is essential in order to direct treatment decisions. This document reviews the appropriateness category of various imaging procedures available to determine the source of the arterial embolism. The variants included in this document are known arterial occlusion in the upper extremity, lower extremity, mesentery, kidneys, and multiorgan distribution that are suspected to be of embolic etiology. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Arteriopatias Oclusivas , Embolia , Humanos , Estados Unidos , Extremidade Inferior/irrigação sanguínea , Diagnóstico por Imagem , Artérias , Sociedades Médicas
6.
J Am Coll Radiol ; 19(5S): S1-S18, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550795

RESUMO

Management of patients with chronic chest pain in the setting of high probability of coronary artery disease (CAD) relies heavily on imaging for determining or excluding presence and severity of myocardial ischemia, hibernation, scarring, and/or the presence, site, and severity of obstructive coronary lesions, as well as course of management and long-term prognosis. In patients with no known ischemic heart disease, imaging is valuable in determining and documenting the presence, extent, and severity of obstructive coronary narrowing and presence of myocardial ischemia. In patients with known ischemic heart disease, imaging findings are important in determining the management of patients with chronic myocardial ischemia and can serve as a decision-making tool for medical therapy, angioplasty, stenting, or surgery. This document summarizes the recent growing body of evidence on various imaging tests and makes recommendations for imaging based on the available data and expert opinion. This document is focused on epicardial CAD and does not discuss the microvascular disease as the cause for CAD. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Doença da Artéria Coronariana , Dor no Peito/diagnóstico por imagem , Dor no Peito/etiologia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Humanos , Probabilidade , Sociedades Médicas , Estados Unidos
7.
JACC Cardiovasc Imaging ; 15(1): 75-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34538630

RESUMO

OBJECTIVES: In this international, multicenter study, using third-generation dual-source computed tomography (CT), we investigated the diagnostic performance of dynamic stress CT myocardial perfusion imaging (CT-MPI) in addition to coronary CT angiography (CTA) compared to invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR). BACKGROUND: CT-MPI combined with coronary CTA integrates coronary artery anatomy with inducible myocardial ischemia, showing promising results for the diagnosis of hemodynamically significant coronary artery disease in single-center studies. METHODS: At 9 centers in Europe, Japan, and the United States, 132 patients scheduled for ICA were enrolled; 114 patients successfully completed coronary CTA, adenosine-stress dynamic CT-MPI, and ICA. Invasive FFR was performed in vessels with 25% to 90% stenosis. Data were analyzed by independent core laboratories. For the primary analysis, for each coronary artery the presence of hemodynamically significant obstruction was interpreted by coronary CTA with CT-MPI compared to coronary CTA alone, using an FFR of ≤0.80 and angiographic severity as reference. Territorial absolute myocardial blood flow (MBF) and relative MBF were compared using C-statistics. RESULTS: ICA and FFR identified hemodynamically significant stenoses in 74 of 289 coronary vessels (26%). Coronary CTA with ≥50% stenosis demonstrated a per-vessel sensitivity, specificity, and accuracy for the detection of hemodynamically significant stenosis of 96% (95% CI: 91%-100%), 72% (95% CI: 66%-78%), and 78% (95% CI: 73%-83%), respectively. Coronary CTA with CT-MPI showed a lower sensitivity (84%; 95% CI: 75%-92%) but higher specificity (89%; 95% CI: 85%-93%) and accuracy (88%; 95% CI: 84%-92%). The areas under the receiver-operating characteristic curve of absolute MBF and relative MBF were 0.79 (95% CI: 0.71-0.86) and 0.82 (95% CI: 0.74-0.88), respectively. The median dose-length product of CT-MPI and coronary CTA were 313 mGy·cm and 138 mGy·cm, respectively. CONCLUSIONS: Dynamic CT-MPI offers incremental diagnostic value over coronary CTA alone for the identification of hemodynamically significant coronary artery disease. Generalized results from this multicenter study encourage broader consideration of dynamic CT-MPI in clinical practice. (Dynamic Stress Perfusion CT for Detection of Inducible Myocardial Ischemia [SPECIFIC]; NCT02810795).


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Imagem de Perfusão do Miocárdio , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Humanos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X/métodos
8.
Circ Cardiovasc Imaging ; 14(12): 1122-1132, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34915729

RESUMO

BACKGROUND: Computed tomography-based evaluation of aortic stenosis (AS) by calcium scoring does not consider interleaflet differences in leaflet characteristics. Here, we sought to examine the functional implications of these differences. METHODS: We retrospectively reviewed the computed tomography angiograms of 200 male patients with degenerative calcific AS undergoing transcatheter aortic valve replacement and 20 male patients with normal aortic valves. We compared the computed tomography angiography (CTA)-derived aortic valve leaflet calcification load (AVLCCTA), appearance, and systolic leaflet excursion (LEsys) of individual leaflets. We performed computer simulations of normal valves to investigate how interleaflet differences in LEsys affect aortic valve area. We used linear regression to identify predictors of leaflet-specific calcification in patients with AS. RESULTS: In patients with AS, the noncoronary cusp (NCC) carried the greatest AVLCCTA (365.9 [237.3-595.4] Agatston unit), compared to the left coronary cusp (LCC, 278.5 [169.2-478.8] Agatston unit) and the right coronary cusp (RCC, 240.6 [137.3-439.0] Agatston unit; both P<0.001). However, LCC conferred the least LEsys (42.8° [38.8°-49.0°]) compared to NCC (44.8° [41.1°-49.78°], P=0.001) and RCC (47.7° [42.0°-52.3°], P<0.001) and was more often characterized as predominantly thickened (23.5%) compared to NCC (12.5%) and RCC (16.5%). Computer simulations of normal valves revealed greater reductions in aortic valve area following closures of NCC (-32.2 [-38.4 to -25.8]%) and RCC (-35.7 [-40.2 to -32.9]%) than LCC (-24.5 [-28.5 to -18.3]%; both P<0.001). By linear regression, the AVLCCTA of NCC and RCC, but not LCC, predicted LEsys (both P<0.001) in patients with AS. Both ostial occlusion and ostial height of the right coronary artery predicted AVLCCTA, RCC (P=0.005 and P=0.001). CONCLUSIONS: In male patients, the AVLCCTA of NCC and RCC contribute more to AS than that of LCC. LCC's propensity for noncalcific leaflet thickening and worse LEsys, however, should not be underestimated when using calcium scores to assess AS severity.


Assuntos
Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Calcinose/complicações , Calcinose/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Cuidados Pré-Operatórios/métodos , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/diagnóstico por imagem , Estudos Transversais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
9.
J Am Coll Radiol ; 18(5S): S52-S61, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33958118

RESUMO

Infective endocarditis can involve a normal, abnormal, or prosthetic cardiac valve. The diagnosis is typically made clinically with persistently positive blood cultures, characteristic signs and symptoms, and echocardiographic evidence of valvular vegetations or valvular complications such as abscess, dehiscence, or new regurgitation. Imaging plays an important role in the initial diagnosis of infective endocarditis, identifying complications, prognostication, and informing the next steps in therapy. This document outlines the initial imaging appropriateness of a patient with suspected infective endocarditis and for additional imaging in a patient with known or suspected infective endocarditis. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Endocardite , Sociedades Médicas , Diagnóstico por Imagem , Endocardite/diagnóstico por imagem , Humanos , Estados Unidos
11.
Radiographics ; 37(2): 383-406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28212053

RESUMO

Transthoracic echocardiography ( TTE transthoracic echocardiography ) is a critical tool in the field of clinical cardiology. It often serves as one of the first-line imaging modalities in the evaluation of cardiac disease owing to its low cost, portability, widespread availability, lack of ionizing radiation, and ability to evaluate both anatomy and function of the heart. Consequently, a large majority of patients undergoing a cardiac computed tomography (CT) or magnetic resonance (MR) imaging examination will have a TTE transthoracic echocardiography available for review. Therefore, it is imperative that cardiac imagers be familiar with the fundamentals of a routine TTE transthoracic echocardiography examination and common TTE transthoracic echocardiography pitfalls and limitations that may lead to a referral for cardiac CT or MR imaging. The four standard TTE transthoracic echocardiography windows and their corresponding views will be discussed and the relevant anatomy highlighted. Common pitfalls and limitations of TTE transthoracic echocardiography will be highlighted using cardiac CT and MR imaging as the problem-solving modality. In this article, we have categorized the relevant pitfalls and limitations of TTE transthoracic echocardiography into four broad categories: (a) masses and mass mimics (crista terminalis, eustachian valve, right ventricle moderator band, atrioventricular groove fat, left ventricular band [or left ventricular false tendon], hiatal hernia, caseous calcification of the mitral annulus, lipomatous hypertrophy of the interatrial septum, cardiac tumors), (b) poorly visualized apical lesions (aneurysm, thrombus, infarct, and hypertrophic and other nonischemic cardiomyopathies), (c) evaluation for ascending thoracic aortic dissections (false positive, false negative, dissecting aneurysms), and (d) pericardial disease (acute and chronic/constrictive pericarditis, pericardial tamponade, pericardial cysts and diverticula, congenital absence of the pericardium). Online supplemental material is available for this article. ©RSNA, 2017.


Assuntos
Ecocardiografia/métodos , Cardiopatias/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
12.
Radiographics ; 35(1): 14-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590385

RESUMO

Knowledge of right atrial anatomic and pathologic imaging findings and associated clinical symptoms is important to avoid false-positive diagnoses and missed findings. Complete evaluation of the heart often requires a multimodality approach that includes radiography, echocardiography, computed tomography (CT), magnetic resonance (MR) imaging, and invasive angiography. In general, CT provides the highest spatial resolution of these modalities at the cost of radiation exposure to the patient. Echocardiography and MR imaging offer complementary and detailed information for functional evaluation without added radiation exposure. The advantages and disadvantages of each modality for the evaluation of right atrial anatomic structure, size, and pathologic findings are discussed. Cardiac MR imaging is the reference standard for evaluation of right atrial size and volume but often is too time consuming and resource intensive to perform in routine clinical practice. Therefore, established reference ranges for two-dimensional transthoracic echocardiography are often used. Right atrial pathologic findings can be broadly categorized into (a) congenital anomalies (cor triatriatum dexter, Ebstein anomaly, and aneurysm), (b) disorders of volume (tricuspid regurgitation, pathologic mimics such as a pseudoaneurysm, and atrial septal defect), (c) disorders of pressure (tricuspid stenosis, restrictive cardiomyopathy, and constrictive pericarditis), and (d) masses (pseudomasses, thrombus, lipomatous hypertrophy of the interatrial septum, lipoma, myxoma, sarcoma, and metastatic disease). Familiarity with each pathologic entity and its treatment options is essential to ensure that appropriate imaging modalities are selected. Online supplemental material is available for this article.


Assuntos
Doenças Cardiovasculares/diagnóstico , Diagnóstico por Imagem , Átrios do Coração/anatomia & histologia , Átrios do Coração/patologia , Meios de Contraste , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA