Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 378(6618): 412-417, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302013

RESUMO

Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars.

2.
Science ; 350(6257): aac7575, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450214

RESUMO

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Assuntos
Lagos , Marte , Clima , Exumação , Paleontologia
3.
Science ; 340(6136): 1068-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723230

RESUMO

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

4.
Nature ; 436(7050): 504-9, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16007077

RESUMO

Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.

5.
Science ; 306(5702): 1698-703, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576602

RESUMO

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Assuntos
Marte , Atmosfera , Evolução Planetária , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Água , Vento
6.
Science ; 306(5702): 1723-6, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576606

RESUMO

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Análise Espectral , Água
7.
Science ; 305(5685): 794-9, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15297657

RESUMO

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.


Assuntos
Marte , Atmosfera , Meio Ambiente Extraterreno , Sedimentos Geológicos , Fenômenos Geológicos , Geologia , Magnetismo , Minerais , Água , Vento
8.
Science ; 294(5549): 2146-8, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11768358

RESUMO

High-resolution images of the south polar residual cap of Mars acquired in 1999 and 2001 show changes in the configuration of pits, intervening ridges, and isolated mounds. Escarpments have retreated 1 to 3 meters in 1 martian year, changes that are an order of magnitude larger than can be explained by the sublimation of water ice, but close to what is expected for sublimation of carbon dioxide ice. These observations support a 35-year-old conjecture that Mars has a large surface reservoir of solid carbon dioxide. The erosion implies that this reservoir is not in equilibrium with the present environment and that global climate change is occurring on Mars.


Assuntos
Dióxido de Carbono , Gelo-Seco , Marte , Atmosfera , Meio Ambiente Extraterreno , Água
9.
Science ; 290(5498): 1927-37, 2000 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-11110654

RESUMO

Layered and massive outcrops on Mars, some as thick as 4 kilometers, display the geomorphic attributes and stratigraphic relations of sedimentary rock. Repeated beds in some locations imply a dynamic depositional environment during early martian history. Subaerial (such as eolian, impact, and volcaniclastic) and subaqueous processes may have contributed to the formation of the layers. Affinity for impact craters suggests dominance of lacustrine deposition; alternatively, the materials were deposited in a dry, subaerial setting in which atmospheric density, and variations thereof mimic a subaqueous depositional environment. The source regions and transport paths for the materials are not preserved.


Assuntos
Marte , Atmosfera , Pressão Atmosférica , Exobiologia , Meio Ambiente Extraterreno , Sedimentos Geológicos , Erupções Vulcânicas , Água
10.
Science ; 288(5475): 2330-5, 2000 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-10875910

RESUMO

Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.


Assuntos
Marte , Água , Meio Ambiente Extraterreno
11.
Nature ; 404(6774): 161-4, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10724162

RESUMO

Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Dióxido de Carbono/análise , Evolução Planetária
12.
Nature ; 397(6720): 589-91, 1999 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10050852

RESUMO

The martian surface shows large outflow channels, widely accepted as having been formed by gigantic floods that could have occurred under climatic conditions like those seen today. Also present are branching valley networks that commonly have tributaries. These valleys are much smaller than the outflow channels and their origins and ages have been controversial. For example, they might have formed through slow erosion by water running across the surface, either early or late in Mars' history, possibly protected from harsh conditions by ice cover. Alternatively, they might have formed through groundwater or ground-ice processes that undermine the surface and cause collapse, again either early or late in Mars' history. Long-duration surface runoff would imply climatic conditions quite different from the present environment. Here we present high-resolution images of martian valleys that support the view that ground water played an important role in their formation, although we are unable as yet to establish when this occurred.


Assuntos
Marte , Evolução Planetária , Meio Ambiente Extraterreno , Fotografação , Água
13.
Science ; 279(5357): 1681-5, 1998 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-9497280

RESUMO

High-resolution images of the martian surface at scales of a few meters show ubiquitous erosional and depositional eolian landforms. Dunes, sandsheets, and drifts are prevalent and exhibit a range of morphology, composition (inferred from albedo), and age (as seen in occurrences of different dune orientations at the same location). Steep walls of topographic depressions such as canyons, valleys, and impact craters show the martian crust to be stratified at scales of a few tens of meters. The south polar layered terrain and superposed permanent ice cap display diverse surface textures that may reflect the complex interplay of volatile and non-volatile components. Low resolution regional views of the planet provide synoptic observations of polar cap retreat, condensate clouds, and the lifecycle of local and regional dust storms.


Assuntos
Meio Ambiente Extraterreno , Marte , Dióxido de Carbono , Gelo , Astronave
14.
Science ; 279(5357): 1692-8, 1998 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-9497282

RESUMO

The Thermal Emission Spectrometer spectra of low albedo surface materials suggests that a four to one mixture of pyroxene to plagioclase, together with about a 35 percent dust component provides the best fit to the spectrum. Qualitative upper limits can be placed on the concentration of carbonates (<10 percent), olivine (<10 percent), clay minerals (<20 percent), and quartz (<5 percent) in the limited regions observed. Limb observations in the northern hemisphere reveal low-lying dust hazes and detached water-ice clouds at altitudes up to 55 kilometers. At an aerocentric longitude of 224 degrees a major dust storm developed in the Noachis Terra region. The south polar cap retreat was similar to that observed by Viking.


Assuntos
Meio Ambiente Extraterreno , Marte , Atmosfera , Dióxido de Carbono , Carbonatos , Gelo , Compostos de Ferro , Compostos de Magnésio , Minerais , Silicatos , Astronave , Análise Espectral , Temperatura , Água
15.
Science ; 278(5344): 1758-65, 1997 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-9388170

RESUMO

Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.


Assuntos
Meio Ambiente Extraterreno , Marte , Água , Atmosfera , Gelo , Minerais , Vento
16.
Science ; 252(5006): 651-8, 1991 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17746665

RESUMO

The global tectonics of Venus may be dominated by plumes rising from the mantle and impinging on the lithosphere, giving rise to hot spots. Global sea-floor spreading does not take place, but direct convective coupling of mantle flow fields to the lithosphere leads to regional-scale deformation and may allow lithospheric transport on a limited scale. A hot-spot evolutionary sequence comprises (i) a broad domal uplift resulting from a rising mantle plume, (ii) massive partial melting in the plume head and generation of a thickened crust or crustal plateau, (iii) collapse of dynamic topography, and (iv) creep spreading of the crustal plateau. Crust on Venus is produced by gradual vertical differentiation with little recycling rather than by the rapid horizontal creation and consumption characteristic of terrestrial sea-floor spreading.

17.
Science ; 217(4560): 637-40, 1982 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17817534

RESUMO

Volcanic hazard maps of surge boundaries and deposit thickness can be created by using a simplified eruption model based on an "energy line" concept of pyroclastic surge and flow emplacement. Computer image-processing techniques may be used to combine three-dimensional representations of the energy relations of pyroclasts moving under the influence of gravity (defined by an "energy cone") with digital topographic models of volcanoes to generate theoretical hazard maps. The deposit boundary and thickness calculated for the 18 May 1980 eruption of Mount St. Helens are qualitatively similar to those actually observed.

18.
Science ; 212(4497): 879-87, 1981 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17830175

RESUMO

The global tectonics of Venus differs significantly from that of Earth, most markedly in that the surface is covered predominately by gently rolling terrain; there apparently are no features like ocean rises; the gravity is positively correlated with topography at all wavelengths; and the few highlands are estimated to be supported or compensated at a depth of approximately 100 kilometers. The surface of Venus appears to be covered mainly by an ancient crust, the high surface temperature making subduction difficult. It seems likely that well over 1 billion years ago water was destabilized at the surface and, soon after, plate tectonics ceased. The highlands appear to be actively supported, presumably as manifestations of long-enduring hot spots.

19.
Science ; 210(4466): 185-8, 1980 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17741285

RESUMO

An approach for factoring the effects of a planetary thermal history into a predicted set of crater statistics for an icy satellite is developed and forms the basis for subsequent data inversion studies. The key parameter is a thermal evolution-dependent critical time for which craters of a particular size forming earlier do not contribute to present-day statistics. An example is given for the satellite Ganymede and the effect of the thermal history is easily seen in the resulting predicted crater statistics. A preliminary comparison with the data, subject to the uncertainties in ice rheology and impact flux history, suggests a surface age of 3.8 x 10(9) years and a radionuclide abundance of 0.3 times the chondritic value.

20.
Science ; 196(4293): 987-90, 1977 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-17778716

RESUMO

Recent radar images of the surface of Venus reveal a complex and varied terrain. By applying a set of simplifying assumptions about the nature of the surfaces returning the radar signal, it is possible to make a number of plausible interpretations. In one region on Venus, several circular features have the gross morphology of degraded impact craters. If they are indeed of impact origin, these features suggest that there exist on Venus areas which are ancient and where erosion or resurfacing has not been as intense or as pervasive as on the earth. In other regions there are intriguing features that may evidence active internal processes. One is a large trough-like depression (0 degrees , 76 degrees W; measuring 1400 by 150 by 2 kilometers) planimetrically suggestive of both the Valles Marineris on Mars and the East African Rift on the earth. Another feature, about 250 kilometers in diameter and of positive relief, includes an 80-kilometer-diameter circular depression at its summit, suggestive of a large volcanic construct. A third region, near 0 degrees , 10 degrees E, contains roughly parallel ranges of mountains separated by valley-like features, with relief varying from small isolated hills several hundred meters high to low ranges on the order of 1000 meters to large mountains approaching 2 kilometers in height. If Venus has a mobile crust similar to the earth's, these mountains may have been produced by compressional tectonics. These interpretations of the radar data indicate that Venus has been a geologically active planet which has developed diverse landforms and therefore is an exciting candidate for future exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA