Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem J ; 481(12): 805-821, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38829003

RESUMO

Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.


Assuntos
Aflatoxinas , Proteínas Fúngicas , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Aflatoxinas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cinética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , DNA/metabolismo , DNA/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Aspergillus/metabolismo , Aspergillus/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
EMBO Rep ; 25(2): 853-875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182815

RESUMO

Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.


Assuntos
Pirofosfatases , Sódio , Pirofosfatases/química , Pirofosfatases/metabolismo , Membranas/metabolismo , Catálise , Sódio/química , Sódio/metabolismo
3.
Protein Sci ; 31(9): e4394, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040263

RESUMO

Membrane-bound pyrophosphatase (mPPase) found in microbes and plants is a membrane H+ pump that transports the H+ ion generated in coupled pyrophosphate hydrolysis out of the cytoplasm. Certain bacterial and archaeal mPPases can in parallel transport Na+ via a hypothetical "billiard-type" mechanism, also involving the hydrolysis-generated proton. Here, we present the functional evidence supporting this coupling mechanism. Rapid-quench and pulse-chase measurements with [32 P]pyrophosphate indicated that the chemical step (pyrophosphate hydrolysis) is rate-limiting in mPPase catalysis and is preceded by a fast isomerization of the enzyme-substrate complex. Na+ , whose binding is a prerequisite for the hydrolysis step, is not required for substrate binding. Replacement of H2 O with D2 O decreased the rates of pyrophosphate hydrolysis by both Na+ - and H+ -transporting bacterial mPPases, the effect being more significant than with a non-transporting soluble pyrophosphatase. We also show that the Na+ -pumping mPPase of Thermotoga maritima resembles other dimeric mPPases in demonstrating negative kinetic cooperativity and the requirement for general acid catalysis. The findings point to a crucial role for the hydrolysis-generated proton both in H+ -pumping and Na+ -pumping by mPPases.


Assuntos
Difosfatos , Pirofosfatases , Difosfatos/metabolismo , Hidrólise , Isótopos , Cinética , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo , Solventes
4.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012762

RESUMO

Membrane pyrophosphatases (mPPases) found in plant vacuoles and some prokaryotes and protists are ancient cation pumps that couple pyrophosphate hydrolysis with the H+ and/or Na+ transport out of the cytoplasm. Because this function is reversible, mPPases play a role in maintaining the level of cytoplasmic pyrophosphate, a known regulator of numerous metabolic reactions. mPPases arouse interest because they are among the simplest membrane transporters and have no homologs among known ion pumps. Detailed phylogenetic studies have revealed various subtypes of mPPases and suggested their roles in the evolution of the "sodium" and "proton" bioenergetics. This treatise focuses on the mechanistic aspects of the transport reaction, namely, the coupling step, the role of the chemically produced proton, subunit cooperation, and the relationship between the proton and sodium ion transport. The available data identify H+-PPases as the first non-oxidoreductase pump with a "direct-coupling" mechanism, i.e., the transported proton is produced in the coupled chemical reaction. They also support a "billiard" hypothesis, which unifies the H+ and Na+ transport mechanisms in mPPase and, probably, other transporters.


Assuntos
Difosfatos , Pirofosfatases , Difosfatos/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Filogenia , Probabilidade , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo
5.
Nucleic Acids Res ; 50(13): 7511-7528, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819191

RESUMO

Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein-DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.


Assuntos
RNA Polimerases Dirigidas por DNA , Escherichia coli , Regiões Promotoras Genéticas , Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , RNA Bacteriano , Fator sigma/metabolismo , Transcrição Gênica
6.
Sci Rep ; 12(1): 5995, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397670

RESUMO

Aflatoxin B1 (AFB1) is a food-borne toxin produced by Aspergillus flavus and a few similar fungi. Natural anti-aflatoxigenic compounds are used as alternatives to chemical fungicides to prevent AFB1 accumulation. We found that a methanolic extract of the food additive Zanthoxylum bungeanum shuts down AFB1 production in A. flavus. A methanol sub-fraction (M20) showed the highest total phenolic/flavonoid content and the most potent antioxidant activity. Mass spectrometry analyses identified four flavonoids in M20: quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The anti-aflatoxigenic potency of M20 (IC50: 2-4 µg/mL) was significantly higher than its anti-proliferation potency (IC50: 1800-1900 µg/mL). RNA-seq data indicated that M20 triggers significant transcriptional changes in 18 of 56 secondary metabolite pathways in A. flavus, including repression of the AFB1 biosynthesis pathway. Expression of aflR, the specific activator of the AFB1 pathway, was not changed by M20 treatment, suggesting that repression of the pathway is mediated by global regulators. Consistent with this, the Velvet complex, a prominent regulator of secondary metabolism and fungal development, was downregulated. Decreased expression of the conidial development regulators brlA and Medusa, genes that orchestrate redox responses, and GPCR/oxylipin-based signal transduction further suggests a broad cellular response to M20. Z. bungeanum extracts may facilitate the development of safe AFB1 control strategies.


Assuntos
Aflatoxinas , Zanthoxylum , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Flavonoides/metabolismo , Genes Reguladores , Metanol/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Metabolismo Secundário , Zanthoxylum/genética
7.
J Mol Biol ; 434(2): 167383, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34863780

RESUMO

The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the ß' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Microscopia Crioeletrônica/métodos , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Holoenzimas/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Iniciação da Transcrição Genética , Transcrição Gênica
8.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575984

RESUMO

Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a "direct coupling" mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell's direct coupling with conformational coupling to catalyze cation transport across the membrane.


Assuntos
Catálise , Difosfatos/química , Pirofosfatase Inorgânica/química , Canais Iônicos/química , Membrana Celular/enzimologia , Dimerização , Hidrólise , Canais Iônicos/genética , Transporte de Íons/genética , Cinética , Potássio/química , Prótons , Pirofosfatases
9.
Molecules ; 26(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919593

RESUMO

Inorganic pyrophosphatase (PPase) is a ubiquitous enzyme that converts pyrophosphate (PPi) to phosphate and, in this way, controls numerous biosynthetic reactions that produce PPi as a byproduct. PPase activity is generally assayed by measuring the product of the hydrolysis reaction, phosphate. This reaction is reversible, allowing PPi synthesis measurements and making PPase an excellent model enzyme for the study of phosphoanhydride bond formation. Here we summarize our long-time experience in measuring PPase activity and overview three types of the assay that are found most useful for (a) low-substrate continuous monitoring of PPi hydrolysis, (b) continuous and fixed-time measurements of PPi synthesis, and (c) high-throughput procedure for screening purposes. The assays are based on the color reactions between phosphomolybdic acid and triphenylmethane dyes or use a coupled ATP sulfurylase/luciferase enzyme assay. We also provide procedures to estimate initial velocity from the product formation curve and calculate the assay medium's composition, whose components are involved in multiple equilibria.


Assuntos
Difosfatos/metabolismo , Pirofosfatase Inorgânica/isolamento & purificação , Fosfatos/metabolismo , Ensaios Enzimáticos/métodos , Humanos , Hidrólise , Pirofosfatase Inorgânica/química , Luciferases/química , Fosfatos/química
10.
Nucleic Acids Res ; 47(19): 10296-10312, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31495891

RESUMO

Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA/química , Transcrição Gênica/efeitos dos fármacos , Uridina/análogos & derivados , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Oxigênio/química , Pseudomonas/química , RNA/genética , Clivagem do RNA/efeitos dos fármacos , Streptomyces/química , Especificidade por Substrato , Timidina/química , Timidina/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Uracila/química , Uridina/síntese química , Uridina/química , Uridina/farmacologia
11.
Nucleic Acids Res ; 46(14): 7284-7295, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29878276

RESUMO

RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/química , Conformação Proteica , Transcrição Gênica , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Ligação Proteica , Estabilidade Proteica
12.
Nat Commun ; 9(1): 1478, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662062

RESUMO

Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relationship of pausing with productive and abortive RNA synthesis remain poorly understood. Using single-molecule FRET and biochemical analysis, here we show that the pause encountered by RNAP after the synthesis of a 6-nt RNA (ITC6) renders the promoter escape strongly dependent on the NTP concentration. Mechanistically, the paused ITC6 acts as a checkpoint that directs RNAP to one of three competing pathways: productive transcription, abortive RNA release, or a new unscrunching/scrunching pathway. The cyclic unscrunching/scrunching of the promoter generates a long-lived, RNA-bound paused state; the abortive RNA release and DNA unscrunching are thus not as tightly linked as previously thought. Finally, our new model couples the pausing with the abortive and productive outcomes of initial transcription.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , RNA Bacteriano/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Genéticos , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Bacteriano/biossíntese
13.
Biochem J ; 475(6): 1141-1158, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29519958

RESUMO

Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.


Assuntos
Membrana Celular/metabolismo , Lisina/metabolismo , Potássio/metabolismo , Multimerização Proteica , Pirofosfatases/química , Pirofosfatases/metabolismo , Catálise , Cátions , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Escherichia coli , Geobacter/enzimologia , Geobacter/genética , Transporte de Íons/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Filogenia , Estrutura Quaternária de Proteína , Pirofosfatases/genética
14.
Biochem J ; 473(19): 3099-111, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27487839

RESUMO

Membrane-bound pyrophosphatases (mPPases) hydrolyze pyrophosphate (PPi) to transport H(+), Na(+) or both and help organisms to cope with stress conditions, such as high salinity or limiting nutrients. Recent elucidation of mPPase structure and identification of subfamilies that have fully or partially switched from Na(+) to H(+) pumping have established mPPases as versatile models for studying the principles governing the mechanism, specificity and evolution of cation transporters. In the present study, we constructed an accurate phylogenetic map of the interface of Na(+)-transporting PPases (Na(+)-PPases) and Na(+)- and H(+)-transporting PPases (Na(+),H(+)-PPases), which guided our experimental exploration of the variations in PPi hydrolysis and ion transport activities during evolution. Surprisingly, we identified two mPPase lineages that independently acquired physiologically significant Na(+) and H(+) cotransport function. Na(+),H(+)-PPases of the first lineage transport H(+) over an extended [Na(+)] range, but progressively lose H(+) transport efficiency at high [Na(+)]. In contrast, H(+)-transport by Na(+),H(+)-PPases of the second lineage is not inhibited by up to 100 mM Na(+) With the identification of Na(+),H(+)-PPase subtypes, the mPPases protein superfamily appears as a continuum, ranging from monospecific Na(+) transporters to transporters with tunable levels of Na(+) and H(+) cotransport and further to monospecific H(+) transporters. Our results lend credence to the concept that Na(+) and H(+) are transported by similar mechanisms, allowing the relative efficiencies of Na(+) and H(+) transport to be modulated by minor changes in protein structure during the course of adaptation to a changing environment.


Assuntos
Evolução Biológica , Proteínas de Membrana/metabolismo , Pirofosfatases/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Hidrólise , Transporte de Íons , Proteínas de Membrana/genética , Metais/metabolismo , Filogenia , Pirofosfatases/genética , Proteínas Recombinantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(25): 7695-700, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056262

RESUMO

Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which are widespread among pathogenic bacteria, are the least understood. In particular, the proton-pumping machinery of these Coxs has not yet been elucidated despite the availability of X-ray structure information. Here, we report the discovery of the first (to our knowledge) sodium-pumping Cox (Scox), a cbb3 cytochrome from the extremely alkaliphilic bacterium Thioalkalivibrio versutus. This finding offers clues to the previously unknown structure of the ion-pumping channel in the C-type Coxs and provides insight into the functional properties of this enzyme.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteobactérias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
16.
Biochem J ; 467(2): 281-91, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25662511

RESUMO

Membrane-bound pyrophosphatase (mPPases) of various types consume pyrophosphate (PPi) to drive active H+ or Na+ transport across membranes. H+-transporting PPases are divided into phylogenetically distinct K+-independent and K+-dependent subfamilies. In the present study, we describe a group of 46 bacterial proteins and one archaeal protein that are only distantly related to known mPPases (23%-34% sequence identity). Despite this evolutionary divergence, these proteins contain the full set of 12 polar residues that interact with PPi, the nucleophilic water and five cofactor Mg2+ ions found in 'canonical' mPPases. They also contain a specific lysine residue that confers K+ independence on canonical mPPases. Two of the proteins (from Chlorobium limicola and Cellulomonas fimi) were expressed in Escherichia coli and shown to catalyse Mg2+-dependent PPi hydrolysis coupled with electrogenic H+, but not Na+ transport, in inverted membrane vesicles. Unique features of the new H+-PPases include their inhibition by Na+ and inhibition or activation, depending on PPi concentration, by K+ ions. Kinetic analyses of PPi hydrolysis over wide ranges of cofactor (Mg2+) and substrate (Mg2-PPi) concentrations indicated that the alkali cations displace Mg2+ from the enzyme, thereby arresting substrate conversion. These data define the new proteins as a novel subfamily of H+-transporting mPPases that partly retained the Na+ and K+ regulation patterns of their precursor Na+-transporting mPPases.


Assuntos
Proteínas de Bactérias/metabolismo , Cellulomonas/enzimologia , Chlorobium/enzimologia , Proteínas de Membrana/metabolismo , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Cellulomonas/genética , Chlorobium/genética , Difosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Transporte de Íons/fisiologia , Magnésio/metabolismo , Proteínas de Membrana/genética , Potássio/metabolismo , Pirofosfatases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Methods Mol Biol ; 1276: 31-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665557

RESUMO

Here we describe a direct fluorescence method that reports real-time occupancies of the pre- and post-translocated state of multisubunit RNA polymerase. In a stopped-flow setup, this method is capable of resolving a single base-pair translocation motion of RNA polymerase in real time. In a conventional spectrofluorometer, this method can be employed for studies of the time-averaged distribution of RNA polymerase on the DNA template. This method utilizes commercially available base analogue fluorophores integrated into template DNA strand in place of natural bases. We describe two template DNA strand designs where translocation of RNA polymerase from a pre-translocation to a post-translocation state results in disruption of stacking interactions of fluorophore with neighboring bases, with a concomitant large increase in fluorescence intensity.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Biologia Molecular/métodos , Transcrição Gênica , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/química , Adenina/metabolismo , Escherichia coli/genética , Fluorescência , Guanina/química , Guanina/metabolismo , Estrutura Molecular , Oligonucleotídeos/genética , Espectrometria de Fluorescência/métodos , Xantopterina/análogos & derivados , Xantopterina/química , Xantopterina/metabolismo
18.
Nat Commun ; 5: 3408, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598909

RESUMO

Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (ß' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-ß subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the ß' F-loop and the ß fork loop. Collectively, our data are consistent with a model in which the ß subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the ß subunit.


Assuntos
Amidinas/metabolismo , Anti-Infecciosos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Hidroxilaminas/metabolismo , Amidinas/química , Amidinas/farmacologia , Substituição de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Cinética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
19.
J Biol Chem ; 288(49): 35489-99, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24158447

RESUMO

Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (<5 mM), the Na(+)-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H(+) accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2-8.2, H(+) transport activity was high at 0.1 mM Na(+) but decreased progressively with increasing Na(+) concentrations until virtually disappearing at 5 mM Na(+). In contrast, (22)Na(+) transport activity changed little over a Na(+) concentration range of 0.05-10 mM. Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.


Assuntos
Proteínas de Bactérias/metabolismo , Chlorobium/enzimologia , Pirofosfatase Inorgânica/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Transporte Biológico Ativo , Chlorobium/genética , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/metabolismo
20.
Microbiol Mol Biol Rev ; 77(2): 267-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23699258

RESUMO

In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Difosfatos/metabolismo , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Hidrólise , Filogenia , Células Procarióticas/metabolismo , Pirofosfatases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA