Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Dev Cogn Neurosci ; 70: 101455, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39368282

RESUMO

We investigate whether neural, cognitive, and psychopathology phenotypes that are more strongly related to genetic differences are less strongly associated with family- and state-level economic contexts (N = 5374 individuals with 1KG-EUR-like genotypes with 870 twins, from the Adolescent Behavior and Cognitive Development study). We estimated the twin- and SNP-based heritability of each phenotype, as well as its association with an educational attainment polygenic index (EA PGI). We further examined associations with family socioeconomic status (SES) and tested whether SES-related differences were moderated by state cost of living and social safety net programs (Medicaid expansion and cash assistance). SES was broadly associated with cognition, psychopathology, brain volumes, and cortical surface areas, even after controlling for the EA PGI. Brain phenotypes that were more heritable or more strongly associated with the EA PGI were not, overall, less related to SES, nor were SES-related differences in these phenotypes less moderated by macroeconomic context and policy. Informing a long-running theoretical debate, and contra to widespread lay beliefs, results suggest that aspects of child brain development that are more strongly related to genetic differences are not, in general, less associated with socioeconomic contexts and policies.

2.
medRxiv ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39399003

RESUMO

Importance: Functional brain networks are associated with both behavior and genetic factors. To uncover clinically translatable mechanisms of psychopathology, it is critical to define how the spatial organization of these networks relates to genetic risk during development. Objective: To determine the relationship between transdiagnostic polygenic risk scores (PRSs), personalized functional brain networks (PFNs), and overall psychopathology (p-factor) during early adolescence. Design: The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing longitudinal cohort study of 21 collection sites across the United States. Here, we conduct a cross-sectional analysis of ABCD baseline data, collected 2017-2018. Setting: The ABCD Study ® is a multi-site community-based study. Participants: The sample is largely recruited through school systems. Exclusion criteria included severe sensory, intellectual, medical, or neurological issues that interfere with protocol and scanner contraindications. Split-half subsets were used for cross-validation, matched on age, ethnicity, family structure, handedness, parental education, site, sex, and anesthesia exposure. Exposures: Polygenic risk scores of transdiagnostic genetic factors F1 (PRS-F1) and F2 (PRS-F2) derived from adults in Psychiatric Genomic Consortium and UK Biobanks datasets. PRS-F1 indexes liability for common psychiatric symptoms and disorders related to mood disturbance; PRS-F2 indexes liability for rarer forms of mental illness characterized by mania and psychosis. Main Outcomes and Measures: (1) P-factor derived from bifactor models of youth- and parent-reported mental health assessments. (2) Person-specific functional brain network topography derived from functional magnetic resonance imaging (fMRI) scans. Results: Total participants included 11,873 youths ages 9-10 years old; 5,678 (47.8%) were female, and the mean (SD) age was 9.92 (0.62) years. PFN topography was found to be heritable (N=7,459, 57.06% of vertices h 2 p FDR <0.05, mean h 2 =0.35). PRS-F1 was associated with p-factor (N=5,815, r=0.12, 95% CI [0.09-0.15], p<0.001). Interindividual differences in functional network topography were associated with p-factor (N=7,459, mean r=0.12), PRS-F1 (N=3,982, mean r=0.05), and PRS-F2 (N=3,982, mean r=0.08). Cortical maps of p-factor and PRS-F1 regression coefficients were highly correlated (r=0.7, p=0.003). Conclusions and Relevance: Polygenic risk for transdiagnostic adulthood psychopathology is associated with both p-factor and heritable PFN topography during early adolescence. These results advance our understanding of the developmental drivers of psychopathology.

3.
Am J Psychiatry ; : appiajp20231055, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380376

RESUMO

OBJECTIVE: Increasingly large samples in genome-wide association studies (GWASs) for alcohol use behaviors (AUBs) have led to an influx of implicated genes, yet the clinical and functional understanding of these associations remains low, in part because most GWASs do not account for the complex and varied manifestations of AUBs. This study applied a multidimensional framework to investigate the latent genetic structure underlying heterogeneous dimensions of AUBs. METHODS: Multimodal assessments (self-report, interview, electronic health records) were obtained from approximately 400,000 UK Biobank participants. GWAS was conducted for 18 distinct AUBs, including consumption, drinking patterns, alcohol problems, and clinical sequelae. Latent genetic factors were identified and carried forward to GWAS using genomic structural equation modeling, followed by functional annotation, genetic correlation, and enrichment analyses to interpret the genetic associations. RESULTS: Four latent factors were identified: Problems, Consumption, BeerPref (declining alcohol consumption with a preference for drinking beer), and AtypicalPref (drinking fortified wine and spirits). The latent factors were moderately correlated (rg values, 0.12-0.57) and had distinct patterns of associations, with BeerPref in particular implicating many novel genomic regions. Patterns of regional and cell type-specific gene expression in the brain also differed between the latent factors. CONCLUSIONS: Deep phenotyping is an important next step to improve understanding of the genetic etiology of AUBs, in addition to increasing sample size. Further effort is required to uncover the genetic heterogeneity underlying AUBs using methods that account for their complex, multidimensional nature.

4.
JMIR Bioinform Biotechnol ; 5: e58357, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39442166

RESUMO

BACKGROUND: Despite growing interest in the clinical translation of polygenic risk scores (PRSs), it remains uncertain to what extent genomic information can enhance the prediction of psychiatric outcomes beyond the data collected during clinical visits alone. OBJECTIVE: This study aimed to assess the clinical utility of incorporating PRSs into a suicide risk prediction model trained on electronic health records (EHRs) and patient-reported surveys among patients admitted to the emergency department. METHODS: Study participants were recruited from the psychiatric emergency department at Massachusetts General Hospital. There were 333 adult patients of European ancestry who had high-quality genotype data available through their participation in the Mass General Brigham Biobank. Multiple neuropsychiatric PRSs were added to a previously validated suicide prediction model in a prospective cohort enrolled between February 4, 2015, and March 13, 2017. Data analysis was performed from July 11, 2022, to August 31, 2023. Suicide attempt was defined using diagnostic codes from longitudinal EHRs combined with 6-month follow-up surveys. The clinical risk score for suicide attempt was calculated from an ensemble model trained using an EHR-based suicide risk score and a brief survey, and it was subsequently used to define the baseline model. We generated PRSs for depression, bipolar disorder, schizophrenia, suicide attempt, and externalizing traits using a Bayesian polygenic scoring method for European ancestry participants. Model performance was evaluated using area under the receiver operator curve (AUC), area under the precision-recall curve, and positive predictive values. RESULTS: Of the 333 patients (n=178, 53.5% male; mean age 36.8, SD 13.6 years; n=333, 100% non-Hispanic and n=324, 97.3% self-reported White), 28 (8.4%) had a suicide attempt within 6 months. Adding either the schizophrenia PRS or all PRSs to the baseline model resulted in the numerically highest discrimination (AUC 0.86, 95% CI 0.73-0.99) compared to the baseline model (AUC 0.84, 95% Cl 0.70-0.98). However, the improvement in model performance was not statistically significant. CONCLUSIONS: In this study, incorporating genomic information into clinical prediction models for suicide attempt did not improve patient risk stratification. Larger studies that include more diverse participants are required to validate whether the inclusion of psychiatric PRSs in clinical prediction models can enhance the stratification of patients at risk of suicide attempts.

5.
Clin Psychol Sci ; 12(5): 865-881, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39323941

RESUMO

Individual differences in self-control predict many health and life outcomes. Building on twin literature, we used genomic structural equation modeling to test the hypothesis that genetic influences on executive function and impulsivity predict independent variance in mental health and other outcomes. The impulsivity factor (comprising urgency, lack of premeditation, and other facets) was only modestly genetically correlated with low executive function (rg =.13). Controlling for impulsivity, low executive function was genetically associated with increased internalizing (ßg =.15), externalizing (ßg =.13), thought disorders (ßg =.38), compulsive disorders (ßg =.22), and chronotype (ßg =.11). Controlling for executive function, impulsivity was positively genetically associated with internalizing (ßg =.36), externalizing (ßg =.55), body mass index (ßg =.26), and insomnia (ßg =.35), and negatively genetically associated with compulsive disorders (ßg = -.17). Executive function and impulsivity were both genetically correlated with general cognitive ability and educational attainment. This work suggests that executive function and impulsivity are genetically separable and show independent associations with mental health.

6.
medRxiv ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39132481

RESUMO

Epidemiological literature has shown that there are extensive comorbidity patterns between psychiatric and physical illness. However, our understanding of the multivariate systems of relationships underlying these patterns is poorly understood. Using Genomic SEM and Genomic E-SEM, an extension for genomic exploratory factor analysis that we introduce and validate, we evaluate the extent to which latent genomic factors from eight domains, encompassing 76 physical outcomes across 1.9 million cases, evince genetic overlap with previously identified psychiatric factors. We find that internalizing, neurodevelopmental, and substance use factors are broadly associated with increased genetic risk sharing across all physical illness domains. Conversely, we find that a compulsive factor is protective against circulatory and metabolic illness, whereas genetic risk sharing between physical illness factors and psychotic/thought disorders was limited. Our results reveal pervasive risk sharing between specific groups of psychiatric and physical conditions and call into question the bifurcation of psychiatric and physical conditions.

7.
Nat Hum Behav ; 8(6): 1177-1193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632388

RESUMO

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.


Assuntos
Tabagismo , Humanos , Tabagismo/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Estados Unidos/epidemiologia , Masculino , Feminino , Registros Eletrônicos de Saúde
8.
Elife ; 122024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324465

RESUMO

The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Córtex Cerebral/fisiologia , Encéfalo/metabolismo , Neuroimagem/métodos , Processos Mentais , Biologia , Mapeamento Encefálico/métodos
9.
JAMA Psychiatry ; 81(2): 188-197, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938835

RESUMO

Importance: Many psychiatric outcomes share a common etiologic pathway reflecting behavioral disinhibition, generally referred to as externalizing (EXT) disorders. Recent genome-wide association studies (GWASs) have demonstrated the overlap between EXT disorders and important aspects of veterans' health, such as suicide-related behaviors and substance use disorders (SUDs). Objective: To explore correlates of risk for EXT disorders within the Veterans Health Administration (VA) Million Veteran Program (MVP). Design, Setting, and Participants: A series of phenome-wide association studies (PheWASs) of polygenic risk scores (PGSs) for EXT disorders was conducted using electronic health records. First, ancestry-specific PheWASs of EXT PGSs were conducted in the African, European, and Hispanic or Latin American ancestries. Next, a conditional PheWAS, covarying for PGSs of comorbid psychiatric problems (depression, schizophrenia, and suicide attempt; European ancestries only), was performed. Lastly, to adjust for unmeasured confounders, a within-family analysis of significant associations from the main PheWAS was performed in full siblings (European ancestries only). This study included the electronic health record data from US veterans from VA health care centers enrolled in MVP. Analyses took place from February 2022 to August 2023 covering a period from October 1999 to January 2020. Exposures: PGSs for EXT, depression, schizophrenia, and suicide attempt. Main Outcomes and Measures: Phecodes for diagnoses derived from the International Statistical Classification of Diseases, Ninth and Tenth Revisions, Clinical Modification, codes from electronic health records. Results: Within the MVP (560 824 patients; mean [SD] age, 67.9 [14.3] years; 512 593 male [91.4%]), the EXT PGS was associated with 619 outcomes, of which 188 were independent of risk for comorbid problems or PGSs (from odds ratio [OR], 1.02; 95% CI, 1.01-1.03 for overweight/obesity to OR, 1.44; 95% CI, 1.42-1.47 for viral hepatitis C). Of the significant outcomes, 73 (11.9%) were significant in the African results and 26 (4.5%) were significant in the Hispanic or Latin American results. Within-family analyses uncovered robust associations between EXT PGS and consequences of SUDs, including liver disease, chronic airway obstruction, and viral hepatitis C. Conclusions and Relevance: Results of this cohort study suggest a shared polygenic basis of EXT disorders, independent of risk for other psychiatric problems. In addition, this study found associations between EXT PGS and diagnoses related to SUDs and their sequelae. Overall, this study highlighted the potential negative consequences of EXT disorders for health and functioning in the US veteran population.


Assuntos
Hepatite Viral Humana , Esquizofrenia , Transtornos Relacionados ao Uso de Substâncias , Veteranos , Humanos , Masculino , Idoso , Estudos de Coortes , Estudo de Associação Genômica Ampla
10.
Nat Med ; 29(12): 3184-3192, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062264

RESUMO

Problematic alcohol use (PAU), a trait that combines alcohol use disorder and alcohol-related problems assessed with a questionnaire, is a leading cause of death and morbidity worldwide. Here we conducted a large cross-ancestry meta-analysis of PAU in 1,079,947 individuals (European, N = 903,147; African, N = 122,571; Latin American, N = 38,962; East Asian, N = 13,551; and South Asian, N = 1,716 ancestries). We observed a high degree of cross-ancestral similarity in the genetic architecture of PAU and identified 110 independent risk variants in within- and cross-ancestry analyses. Cross-ancestry fine mapping improved the identification of likely causal variants. Prioritizing genes through gene expression and chromatin interaction in brain tissues identified multiple genes associated with PAU. We identified existing medications for potential pharmacological studies by a computational drug repurposing analysis. Cross-ancestry polygenic risk scores showed better performance of association in independent samples than single-ancestry polygenic risk scores. Genetic correlations between PAU and other traits were observed in multiple ancestries, with other substance use traits having the highest correlations. This study advances our knowledge of the genetic etiology of PAU, and these findings may bring possible clinical applicability of genetics insights-together with neuroscience, biology and data science-closer.


Assuntos
Alcoolismo , Grupos Raciais , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Alcoolismo/genética
11.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963017

RESUMO

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Assuntos
Encéfalo , Transcriptoma , Adulto , Humanos , Tamanho do Órgão , Encéfalo/metabolismo , Fenótipo , Estudo de Associação Genômica Ampla/métodos , Biologia Molecular , Predisposição Genética para Doença
12.
medRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732233

RESUMO

Mental conditions exhibit a higher-order transdiagnostic factor structure which helps to explain the widespread comorbidity observed in psychopathology. However, the phenotypic and genetic structures of psychopathology may differ, raising questions about the validity and utility of these factors. Here, we study the phenotypic and genetic factor structures of ten psychiatric conditions using UK Biobank and public genomic data. Although the factor structure of psychopathology was generally genetically and phenotypically consistent, conditions related to externalizing (e.g., alcohol use disorder) and compulsivity (e.g., eating disorders) exhibited cross-level disparities in their relationships with other conditions, plausibly due to environmental influences. Domain-level factors, especially thought disorder and internalizing factors, were more informative than a general psychopathology factor in genome-wide association and polygenic index analyses. Collectively, our findings enhance the understanding of comorbidity and shared etiology, highlight the intricate interplay between genes and environment, and offer guidance for psychiatric research using polygenic indices.

13.
Behav Genet ; 53(5-6): 404-415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713023

RESUMO

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples. For the externalizing GWAS, although down-sampling resulted in a loss of genetic signal and fewer genome-wide significant loci; the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses were found robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators who generate and share down-sampled summary statistics report these analyses as accompanying documentation to support other researchers' use of the summary statistics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Genômica/métodos , Herança Multifatorial
14.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592024

RESUMO

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Assuntos
Córtex Cerebral , Estudo de Associação Genômica Ampla , Humanos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem , Fenótipo
15.
Addict Biol ; 28(9): e13319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644899

RESUMO

Substance use disorders (SUDs) are phenotypically and genetically correlated with each other and with other psychological traits characterized by behavioural under-control, termed externalizing phenotypes. In this study, we used genomic structural equation modelling to explore the shared genetic architecture among six externalizing phenotypes and four SUDs used in two previous multivariate genome-wide association studies of an externalizing and an addiction risk factor, respectively. We first evaluated five confirmatory factor analytic models, including a common factor model, alternative parameterizations of two-factor structures and a bifactor model. We next explored the genetic correlations between factors identified in these models and other relevant psychological traits. Finally, we quantified the degree of polygenic overlap between externalizing and addiction risk using MiXeR. We found that the common and two-factor structures provided the best fit to the data, evidenced by high factor loadings, good factor reliability and no evidence of concerning model characteristics. The two-factor models yielded high genetic correlations between factors (rg s ≥ 0.87), and between the effect sizes of genetic correlations with external traits (rg  ≥ 0.95). Nevertheless, 21 of the 84 correlations with external criteria showed small, significant differences between externalizing and addiction risk factors. MiXer results showed that approximately 81% of influential externalizing variants were shared with addiction risk, whereas addiction risk shared 56% of its influential variants with externalizing. These results suggest that externalizing and addiction genetic risk are largely shared, though both constructs also retain meaningful unshared genetic variance. These results can inform future efforts to identify specific genetic influences on externalizing and SUDs.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estudo de Associação Genômica Ampla , Reprodutibilidade dos Testes , Transtornos Relacionados ao Uso de Substâncias/genética , Fenótipo
16.
Nat Neurosci ; 26(8): 1461-1471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460809

RESUMO

Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Animais , Humanos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Conectoma/métodos , Macaca
17.
medRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398155

RESUMO

Behaviors and disorders characterized by difficulties with self-regulation, such as problematic substance use, antisocial behavior, and symptoms of attention-deficit/hyperactivity disorder (ADHD), incur high costs for individuals, families, and communities. These externalizing behaviors often appear early in the life course and can have far-reaching consequences. Researchers have long been interested in direct measurements of genetic risk for externalizing behaviors, which can be incorporated alongside other known risk factors to improve efforts at early identification and intervention. In a preregistered analysis drawing on data from the Environmental Risk (E-Risk) Longitudinal Twin Study (N=862 twins) and the Millennium Cohort Study (MCS; N=2,824 parent-child trios), two longitudinal cohorts from the UK, we leveraged molecular genetic data and within-family designs to test for genetic effects on externalizing behavior that are unbiased by the common sources of environmental confounding. Results are consistent with the conclusion that an externalizing polygenic index (PGI) captures causal effects of genetic variants on externalizing problems in children and adolescents, with an effect size that is comparable to those observed for other established risk factors in the research literature on externalizing behavior. Additionally, we find that polygenic associations vary across development (peaking from age 5-10 years), that parental genetics (assortment and parent-specific effects) and family-level covariates affect prediction little, and that sex differences in polygenic prediction are present but only detectable using within-family comparisons. Based on these findings, we believe that the PGI for externalizing behavior is a promising means for studying the development of disruptive behaviors across child development.

18.
JAMA Psychiatry ; 80(8): 811-821, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314780

RESUMO

Importance: Psychiatric disorders display high levels of comorbidity and genetic overlap, necessitating multivariate approaches for parsing convergent and divergent psychiatric risk pathways. Identifying gene expression patterns underlying cross-disorder risk also stands to propel drug discovery and repurposing in the face of rising levels of polypharmacy. Objective: To identify gene expression patterns underlying genetic convergence and divergence across psychiatric disorders along with existing pharmacological interventions that target these genes. Design, Setting, and Participants: This genomic study applied a multivariate transcriptomic method, transcriptome-wide structural equation modeling (T-SEM), to investigate gene expression patterns associated with 5 genomic factors indexing shared risk across 13 major psychiatric disorders. Follow-up tests, including overlap with gene sets for other outcomes and phenome-wide association studies, were conducted to better characterize T-SEM results. The Broad Institute Connectivity Map Drug Repurposing Database and Drug-Gene Interaction Database public databases of drug-gene pairs were used to identify drugs that could be repurposed to target genes found to be associated with cross-disorder risk. Data were collected from database inception up to February 20, 2023. Main Outcomes and Measures: Gene expression patterns associated with genomic factors or disorder-specific risk and existing drugs that target these genes. Results: In total, T-SEM identified 466 genes whose expression was significantly associated (z ≥ 5.02) with genomic factors and 36 genes with disorder-specific effects. Most associated genes were found for a thought disorders factor, defined by bipolar disorder and schizophrenia. Several existing pharmacological interventions were identified that could be repurposed to target genes whose expression was associated with the thought disorders factor or a transdiagnostic p factor defined by all 13 disorders. Conclusions and Relevance: The findings from this study shed light on patterns of gene expression associated with genetic overlap and uniqueness across psychiatric disorders. Future versions of the multivariate drug repurposing framework outlined here have the potential to identify novel pharmacological interventions for increasingly common, comorbid psychiatric presentations.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Humanos , Transcriptoma/genética , Reposicionamento de Medicamentos , Análise de Classes Latentes , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética
19.
Transl Psychiatry ; 13(1): 167, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173343

RESUMO

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Camundongos , Fenótipo , Comportamento Impulsivo , Personalidade/genética , Polimorfismo de Nucleotídeo Único , Moléculas de Adesão Celular/genética
20.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37034728

RESUMO

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA