Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35626246

RESUMO

Foot and ankle surgery is increasingly prevalent. Knowledge of the mechanisms underlying common foot and ankle deformities is useful in understanding surgical procedures used to restore normal biomechanics. As surgical techniques evolve, it is important for the radiologist to be familiar with these procedures, their expected postoperative appearance, and potential complications. This article reviews the key imaging findings of a variety of common and important foot and ankle surgical procedures.

2.
Bioorg Med Chem ; 23(23): 7378-85, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26541587

RESUMO

Two synthetic aziridinomitosenes (AZMs), Me-AZM and H-AZM, structurally related to mitomycin C (MC) were evaluated for their anticancer activity against six cancer cell lines (HeLa, Jurkat, T47D, HepG2, HL-60, and HuT-78) and tested for their DNA-modifying abilities in Jurkat cells. Cytotoxicity assays showed that Me-AZM is up to 72-fold and 520-fold more potent than MC and H-AZM, respectively. Me-AZM also demonstrated increased DNA modification over MC and H-AZM in alkaline COMET and Hoechst fluorescence assays that measured crosslinks in cellular DNA. Me-AZM and H-AZM treatment of Jurkat cells was found to sponsor significant DNA-protein crosslinks using a K-SDS assay. The results clearly indicate that the AZM C6/C7 substitution pattern plays an important role in drug activity and supports both DNA-DNA and DNA-protein adduct formation as mechanisms for inducing cytotoxic effects.


Assuntos
Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/metabolismo , Mitomicinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Reagentes de Ligações Cruzadas/química , Adutos de DNA/metabolismo , Humanos , Mitomicinas/química , Relação Estrutura-Atividade
3.
Chembiochem ; 15(3): 413-24, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24420650

RESUMO

α-Conotoxin MII (α-CTxMII) is a 16-residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2-Cys8 and Cys3-Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand-binding affinity, homology models of the heteropentameric α3ß2-nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3- and ß2-subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3ß2-nAChR for α-CTxMII with ACh bound to the receptor, and this was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs.


Assuntos
Acetilcolina/metabolismo , Conotoxinas/metabolismo , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/química , Caramujo Conus/metabolismo , Bases de Dados de Proteínas , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Antagonistas Nicotínicos/química , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/química , Alinhamento de Sequência , Eletricidade Estática
4.
Biochem Mol Biol Educ ; 42(2): 179-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24376157

RESUMO

DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that allows users to utilize a readily accessible computational tool to explore biomolecules and their interactions. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular structure creation, ligand binding calculations, and visualization of docking results. A student procedure is provided that illustrates the use of DockoMatic to create a homology model for the amino propeptide region (223 amino acids with two disulfide bonds) of collagen α1 (XI), followed by molecular docking of the commercial drug Arixtra(®) to the homology model of α1 (XI), and finally, analysis of the results of the docking experiment. The activities and Supporting Information described are intended to educate students in the use of computational tools to create and investigate homology models for other systems of interest and to train students to perform and analyze molecular docking studies. The tutorial also serves as a foundation for investigators seeking to explore the viability of using computational biochemistry to study their receptor-ligand binding motifs. © 2013 by The International Union of Biochemistry and Molecular Biology, 42(2):179-182, 2014.


Assuntos
Bioquímica/educação , Currículo , Software , Sítios de Ligação , Simulação por Computador , Humanos , Estrutura Molecular , Ligação Proteica , Homologia Estrutural de Proteína
5.
J Chem Inf Model ; 53(8): 2161-70, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23808933

RESUMO

DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Simulação de Acoplamento Molecular/métodos , Homologia de Sequência de Aminoácidos , Software , Interface Usuário-Computador , Gráficos por Computador , Proteínas/química , Alinhamento de Sequência
6.
GSTF Int J Bioinforma Biotechnol ; 1(1): 43-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25309886

RESUMO

The amino propeptide of collagen α1(XI) (NPP) has been shown to bind glycosaminoglycans and to form a dimer. While these are independent biochemical events, it is likely that dimerization facilitates the interaction with glycosaminoglycans or alternatively, that glycosaminoglycan interaction facilitates the formation of an NPP:NPP dimer. The computer program MODELLER was used to generate a homology model of the collagen α1(XI) NPP monomer using the crystal structure of the closely related noncollagenous-4 (NC4) domain of collagen α1(IX) (PDB:2UUR) as the template. Additionally, a dimer model of collagen α1(XI) NPP domain was created based upon the thrombospondin dimer template (PDB:1Z78). The structure of the dimer created in MODELLER was validated by comparison to a dimer model generated by docking two monomers of PDB:2UUR using ClusPro. Calculations of relative binding energy for the interaction between each collagen α1(XI) NPP model and glycosaminoglycans as ligands was performed using AutoDock4. Computational results support a higher affinity between heparan sulfate and a dimer compared to a monomer. These findings are supported by affinity chromatography experiments in which distinct monomer and dimer peaks were observed. Sequential point mutation studies of the putative binding site (147-KKKITK-152) indicated the importance of the basic lysine residue for binding to heparan sulfate. Two orders of magnitude change in binding affinity was predicted when comparing wild type to the mutation K152A. Experimental data supports the predicted change in affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA