Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 85(8): 2358-2374, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35486460

RESUMO

Various activities of different industries are found to be the main reason for water pollution with heavy metals. Use of microorganisms that are tolerant even of a high concentration of metal ions could be a valuable tool for remediation of contaminated water resources. In the present study, microorganisms that showed high resistance to lead ions were isolated and evaluated for biosorption efficiency for removal of lead ions from waste water. Biochemical identification and 16S rRNA gene sequence analysis indicated that the isolated strain was Brevibacillus. The conditions of pH, biomass concentration, temperature, time, agitation and Initial concentration of metal for biosorption of Pb (II) were optimized. Based on induction coupled plasma optical emission spectroscopy (ICP-OES) analysis, the biosorption efficiency of Brevibacillus at optimized conditions of initial metal concentration of 150 µg/mL, 1 g/L of biomass dose, pH 6.0, 40 °C, for 12 h at 80 rpm was 78.58% and the biosorption capacity (qe) is 128.58 mg/g of the biosorbent. Of the three isotherm models investigated, the Freundlich isotherm model was identified as a good fit with high correlation coefficient, while kinetic data followed the pseudo first order model as best fit. Surface characterization by scanning electron microscopy (SEM) analysis revealed morphological changes with a bulged rod-shape cell having metal depositions and rough texture. The presence of lead within the cell was detected by transmission emission microscopy (TEM). The key functional groups that participate in biosorption were analyzed by Fourier transform infrared (FTIR) spectroscopy and were found to be carboxyl, hydroxyl, amino and phosphate groups. From the real-time study, it proves that the biomass of Brevibacillus can be used as a promising biosorbent for removal of metals including lead from waste water.


Assuntos
Brevibacillus , Adsorção , Biomassa , Brevibacillus/genética , Íons , Chumbo , RNA Ribossômico 16S , Águas Residuárias , Poluição da Água , Recursos Hídricos
2.
Turk J Pharm Sci ; 16(4): 457-465, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32454750

RESUMO

OBJECTIVES: Leflunomide (LFNM) is a drug that belongs to isoxazole derivatives and has immunosuppressive and anti-inflammatory activities. A literature search confirms that there is no method reported for the simultaneous estimation of LFNM and its related impurities A and B in pharmaceutical dosage forms or in bulk drug. Hence the present work aimed to develop a simple stability indicating RP-HPLC method for the separation and quantification of LFNM and its impurities A and B. MATERIALS AND METHODS: Systematic trials of method conditions like mobile phase ratio, pH, flow rate, stationary phase, and detector wavelength were performed for the simultaneous analysis of LFNM and its related impurities A and B. The developed method was validated as per the ICH guidelines including forced degradation studies in different stress conditions. RESULTS: Optimized separation was achieved on a Thermo Scientific Hypersil ODS C18 column (250 mm×4.6 mm; 5 µm id) using mobile phase composition of acetonitrile, methanol, and 0.1 M sodium perchlorate in the ratio of 40:30:30 (v/v), pH 4.6, at a flow rate of 1.0 mL/min in isocratic elution. UV detection was carried out at a wavelength of 246 nm. Well-resolved peaks were observed with high numbers of theoretical plates, lower tailing factor, and reproducible relative retention time and response factor. The method was validated and all the validation parameters were found to be within the acceptance limits. Stability tests were done through exposure of the analyte solution to five different stress conditions, i.e. 1 N HCl, 1 N NaOH, 3% H2O2, thermal degradation of powder, and exposure to UV radiation. The method can successfully separate the degradation products along with both the impurities studied. The % degradation was also found to be less. CONCLUSION: The method developed for LFNM is simple and precise and can be applied for the separation and quantification of LFNM and its related impurities in bulk drug and pharmaceutical formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA