RESUMO
Background: Physiologically relevant cell line-based models of human airway mucosa are needed to assess nanoparticle-mediated pulmonary toxicity for any xenbiotics expsoure study. Palladium nanoparticles (Pd-NP) originating from catalytic converters in vehicles pose health risks. We aimed to develop in vitro airway models to assess the toxic potential of Pd-NP in normal (Non-CB) and chronic bronchitis-like (CB-like) mucosa models. Methods: Bronchial mucosa models were developed using Epithelial cells (16HBE: apical side) co-cultured with fibroblast (basal side) at an air-liquid interface. Furthermore, both Non-CB and CB-like (IL-13 treatment) models with increased numbers of goblet cells were used. The models were exposed to 3 different doses of aerosolized Pd-NP (0.2, 0.3, and 6 µg/cm2) using XposeALI® and clean air as a control. After 24 h of incubation, the expression of inflammatory (IL6, CXCL8, TNFα, and NFKB), oxidative stress (HMOX1, SOD3, GPx, and GSTA1), and tissue injury/repair (MMP9/TIMP1) markers was assessed using qRT-PCR. The secretion of CXCL-8 and the expression of a tissue injury/repair marker (MMP-9) were measured via ELISA. Results: Significantly (p < 0.05) increased expressions of CXCL8, IL6, and NFKB were observed at the highest dose of Pd-NP in CB-like models. However, in Non-CB mucosa models, a maximum effect on TNFα and NFKB expression was observed at a medium Pd-NP dose. In Non-CB mucosa models, SOD3 showed a clear dose-dependent response to Pd-NP exposure, while GSTA1 expression was significantly increased (p < 0.05) only at the lowest dose of Pd-NP. The secretion of CXCL-8 increased in a dose-dependent manner in the Non-CB mucosa models following exposure to Pd-NP. In CB-like models, exposure to high concentrations of Pd-NP significantly increased the release of MMP-9 compared to that in other exposure groups. Conclusion: The combination of our Non-CB and CB-like mucosa models with the XposeALI® system for aerosolized nanoparticle exposure closely mimics in vivo lung environments and cell-particle interactions. Results from these models, utilizing accessible cell lines, will maximize the reliability of in vitro findings in human health risk assessment.
RESUMO
Traditionally, developing inhaled drug formulations relied on trial and error, yet recent technological advancements have deepened the understanding of 'inhalation biopharmaceutics' i.e. the processes that occur to influence the rate and extent of drug exposure in the lungs. This knowledge has led to the development of new in vitro models that predict the in vivo behavior of drugs, facilitating the enhancement of existing formulation and the development of novel ones. Our prior research examined how simulated lung fluid (SLF) affects the solubility of inhaled drugs. Building on this, we aimed to explore drug dissolution and permeability in lung mucosa models containing mucus. Thus, the permeation of four active pharmaceutical ingredients (APIs), salbutamol sulphate (SS), tiotropium bromide (TioBr), formoterol fumarate (FF) and budesonide (BUD), was assayed in porcine mucus covered Calu-3 cell layers, cultivated at an air liquid interface (ALI) or submerged in a liquid covered (LC) culture system. Further analysis on BUD and FF involved their transport in a mucus-covered PAMPA system. Finally, their dissolution post-aerosolization from Symbicort® was compared using 'simple' Transwell and complex DissolvIt® apparatuses, alone or in presence of porcine mucus or polymer-lipid mucus simulant. The presence of porcine mucus impacted both permeability and dissolution of inhaled drugs. For instance, permeability of SS was reduced by a factor of ten in the Calu-3 ALI model while the permeability of BUD was reduced by factor of two in LC and ALI setups. The comparison of dissolution methodologies indicated that drug dissolution performance was highly dependent on the setup, observing decreased release efficiency and higher variability in Transwell system compared to DissolvIt®. Overall, results demonstrate that relatively simple methodologies can be used to discriminate between formulations in early phase drug product development. However, for more advanced stages complex methods are required. Crucially, it was clear that the impact of mucus and selection of its composition in in vitro testing of dissolution and permeability should not be neglected when developing drugs and formulations intended for inhalation.
Assuntos
Albuterol , Budesonida , Liberação Controlada de Fármacos , Fumarato de Formoterol , Muco , Permeabilidade , Brometo de Tiotrópio , Muco/metabolismo , Administração por Inalação , Suínos , Animais , Budesonida/farmacocinética , Budesonida/administração & dosagem , Budesonida/química , Fumarato de Formoterol/administração & dosagem , Fumarato de Formoterol/farmacocinética , Humanos , Albuterol/administração & dosagem , Albuterol/farmacocinética , Albuterol/química , Brometo de Tiotrópio/administração & dosagem , Brometo de Tiotrópio/farmacocinética , Brometo de Tiotrópio/química , Solubilidade , Linhagem Celular , Broncodilatadores/administração & dosagem , Broncodilatadores/farmacocinética , Broncodilatadores/química , Pulmão/metabolismo , Composição de Medicamentos/métodosRESUMO
The composition, morphology and dissolution profile of particles and micro-sized agglomerates delivered upon inhalation may have a significant impact on the product clinical effect. However, although several efforts are ongoing, a methodology that considers deposition structures and dissolution performance evaluation in a biorelevant set-up is not yet standardized. The goal of this work is to apply a collection and dissolution methodology able to discriminate dry powder inhaler (DPI) formulations in terms of deposition structures and dissolution profile in vitro. Hence, Fluticasone Propionate (FP) engineered particles and formulated products (used as a case study) were collected employing a breath simulator and characterized regarding (i) aerodynamic particle size distribution; (ii) deposited microstructures; and (iii) dissolution/absorption profiles using the DissolvIt® bio-relevant dissolution equipment. The results indicated that the particle engineering technology had an impact on the generated and deposited microstructures, here associated to the differences on surface properties of jet milled and wet polished particles quantified by the specific surface area. Differences on surface properties modulate particle interactions, resulting in agglomerates of drug substance and excipient upon actuation with significant different morphologies, observed by microscope, as well as quantified by Marple cascade impactor. These observations allow for a further understanding of the DPI aerosolization and deposition mechanisms. The dissolution and absorption assessment indicates that the presence of lactose may accelerate the drug substance dissolution kinetics, and the FP dissolution can be significantly enhanced when formulated as a spray-dried dispersion particle. Ultimately, the results suggest dissolution testing can be an essential tool to both optimize an innovator DPI and de-risk generics development.
Assuntos
Inaladores de Pó Seco , Administração por Inalação , Aerossóis , Tamanho da Partícula , Pós , SolubilidadeRESUMO
Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1ß release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale® system, and NPs were deposited on the co-culture using XposeALI®. No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1ß, IL-6, TNFα, MCP-1) were observed after exposure of the co-culture in ALI (max 5 µg/cm2) or submerged (max 22 µg/cm2) conditions. In contrast, CeO2 NPs cause clear IL-1ß release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.
RESUMO
Carbon nanoparticles (CNP) are generated by incomplete combustion of diesel engines. Several epidemiological studies associated higher susceptibility to particulate matter related adverse respiratory outcomes with preexisting conditions like chronic bronchitis (CB). Therefore, we compared the effect of CNP exposure on primary bronchial epithelial cells (PBEC) developed in air-liquid interface (ALI) models of normal versus CB-like-mucosa.PBEC cultured at ALI represented normal mucosa (PBEC-ALI). To develop CB-like-mucosa (PBEC-ALI/CB), 1 ng/ml interleukin-13 was added to the basal media of PBEC-ALI culturing. PBEC-ALI and PBEC-ALI/CB were exposed to sham or to aerosolized CNP using XposeALI® system. Protein levels of CXCL-8 and MMP-9 were measured in the basal media using ELISA. Transcript expression of pro-inflammatory (CXCL8, IL6, TNF, NFKB), oxidative stress (HMOX1, SOD3, GSTA1, GPx), tissue injury/repair (MMP9/TIMP1) and bronchial cell type markers (MUC5AC, CC10) were assessed using qRT-PCR.Increased secretion of CXCL-8 and MMP-9 markers was detected 24 h post-exposure in both PBEC-ALI and PBEC-ALI/CB with more pronounced effect in the later. Pro-inflammatory and tissue injury markers were increased at both 6 h and 24 h post-exposure in PBEC-ALI/CB. Oxidative stress markers exhibited similar responses at 6 h and 24 h post-exposure in PBEC-ALI/CB. The club cell specific marker CC10 was increased by 300 fold in PBEC-ALI/CB and 20 fold in PBEC-ALI following CNP exposure.Our data indicates an earlier and stronger reaction of pro-inflammatory, oxidative stress and tissue injury markers in PBEC-ALI/CB models compared to PBEC-ALI models following CNP exposure. The findings may provide insight into the plausible mechanisms of higher susceptibility among predisposed individuals to nanoparticle exposure.
Assuntos
Brônquios/efeitos dos fármacos , Bronquite Crônica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Bronquite Crônica/patologia , Carbono/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mucosa/efeitos dos fármacos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Material Particulado , Mucosa Respiratória/efeitos dos fármacosRESUMO
The surface area of the air/liquid interface in the lungs is substantial, so deposited doses of aerosol medicines per interface surface area when administered via the inhalation route is always quite low. However, in most in vitro systems used for dissolution testing of dry powder inhalables, the dose per surface area is generally much higher. The aim of this study was to investigate in one in vitro lung dissolution system, the DissolvIt, the manner in which the deposited dose per test surface area of drug particles influences the simulated dissolution- and absorption rate. Here we used the dissolution test method DissolvIt to investigate the influence on dissolution behavior by varying the deposited surface density of tested drugs. Dry powders of three different active pharmaceutical ingredients with different solubilities were used; salmeterol, budesonide and fluticasone propionate. It was found that by varying the dose density from 0.23 to 29⯵g/cm2 the dissolution- and absorption rate of test particles was affected for all three substances, with decreasing relative dissolution rates above certain dose limits. The effect was much more prominent with the least soluble fluticasone propionate. In contrast, in a real lung it has been shown that a tenfold increase of the even less soluble fluticasone furoate did not affect the pulmonary dissolution- and absorption as measured in the ex vivo isolated perfused rat lung. This indicates that the deposited particle dose on the test surface used must be carefully considered in all in vitro dissolution testing apparatuses used for inhalation drugs, especially when aiming for in vitro-in vivo correlations. Conclusive data show that in the DissolvIt system consistent normalized dissolution- and absorption data can be obtained if the deposition density of test substance are kept below 1⯵g/cm2 and the variability between the initial drug doses is smaller than 10-15% expressed as standard deviation.
Assuntos
Broncodilatadores/farmacocinética , Liberação Controlada de Fármacos , Pulmão/metabolismo , Modelos Biológicos , Mucosa Respiratória/metabolismo , Administração por Inalação , Aerossóis , Broncodilatadores/administração & dosagem , Budesonida/administração & dosagem , Budesonida/farmacocinética , Inaladores de Pó Seco , Fluticasona/administração & dosagem , Fluticasona/farmacocinética , Tamanho da Partícula , Pós , Xinafoato de Salmeterol/administração & dosagem , Xinafoato de Salmeterol/farmacocinética , SolubilidadeRESUMO
The dissolution of inhaled drug particles in the lungs is a challenge to model using biorelevant methods in terms of (i) collecting a respirable emitted aerosol fraction and dose, (ii) presenting this to a small volume of medium that is representative of lung lining fluid, and (iii) measuring the low concentrations of drug released. We report developments in methodology for each of these steps and utilize mechanistic in silico modeling to evaluate the in vitro dissolution profiles in the context of plasma concentration-time profiles. The PreciseInhale aerosol delivery system was used to deliver Flixotide aerosol particles to Dissolv It apparatus for measurement of dissolution. Different media were used in the Dissolv It chamber to investigate their effect on dissolution profiles, these were (i) 1.5% poly(ethylene oxide) with 0.4% l-alphaphosphatidyl choline, (ii) Survanta, and (iii) a synthetic simulated lung lining fluid (SLF) based on human lung fluid composition. For fluticasone proprionate (FP) quantification, solid phase extraction was used for sample preparation with LC-MS/MS analysis to provide an assay that was fit for purpose with a limit of quantification for FP of 312 pg/mL. FP concentration-time profiles in the flow-past perfusate were similar irrespective of the medium used in the Dissolv It chamber (â¼0.04-0.07%/min), but these were significantly lower than transfer of drug from air-to-perfusate in isolated perfused lungs (0.12%/min). This difference was attributed to the Dissolv It system representing slower dissolution in the central region of the lungs (which feature nonsink conditions) compared to the peripheral regions that are represented in the isolated lung preparation. Pharmacokinetic parameters ( Cmax, Tmax, and AUC0-∞) were estimated from the profiles for dissolution in the different lung fluid simulants and were predicted by the simulation within 2-fold of the values reported for inhaled FP (1000 µg dose) administered via Flixotide Evohaler 250 µg strength inhaler in man. In conclusion, we report methods for performing biorelevant dissolution studies for orally inhaled products and illustrate how they can provide inputs parameters for physiologically based pharmacokinetic (PBPK) modeling of inhaled medicines.
Assuntos
Simulação por Computador , Liberação Controlada de Fármacos , Fluticasona/química , Modelos Biológicos , Nebulizadores e Vaporizadores , Administração por Inalação , Administração Oral , Aerossóis/química , Animais , Cromatografia Líquida , Feminino , Fluticasona/administração & dosagem , Pulmão/metabolismo , Modelos Animais , Perfusão , Ratos , Solubilidade , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. METHOD: Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 µg/cm2 aerosolized DEP using XposeALI®. Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. RESULTS: In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). CONCLUSION: The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell-cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems.
Assuntos
Brônquios/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Emissões de Veículos/toxicidade , Brônquios/citologia , Brônquios/imunologia , Brônquios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação , Macrófagos Alveolares/metabolismo , Estresse Oxidativo/imunologia , Cultura Primária de Células , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismoRESUMO
The main purpose of this work was to develop an in vitro method for simulating the dissolution and absorption of inhaled dry powder drugs that also mimics systemic pharmacokinetic data. A second purpose was to evaluate this method. DissolvIt® was developed as a simulation of the air-blood barrier of the upper airways, constituting: "airborne" particles deposited on a glass cover slip, a mucus simulant, a polycarbonate (basal) membrane, and a pumped albumin buffer simulating the pulmonary blood flow. The PreciseInhale® exposure system was used to aerosolize and deposit test formulations onto cover slips. The particle dissolution was observed by optical microscopy as particle disappearance, and it was started directly when the particles came into contact with the mucus simulant. Solute from the dissolving particles diffused through the barrier and was absorbed into the perfusate. The drug concentration in the perfusate over time and the remaining drug in the barrier at the end of the experiment were quantitated by using liquid chromatography-tandem mass spectrometry. Budesonide and fluticasone propionate generated different pharmacokinetic dissolution/absorption profiles in DissolvIt. This study indicates that DissolvIt simulates dissolution and absorption of drugs in the lung, and that DissolvIt also mimics pharmacokinetic profiles and parameters.
Assuntos
Absorção Fisico-Química , Pulmão/química , Muco/química , Pós/administração & dosagem , Pós/química , Absorção pelo Trato Respiratório , Administração por Inalação , Materiais Biomiméticos/farmacocinética , Desenho de Equipamento , Microfluídica/instrumentação , SolubilidadeRESUMO
BACKGROUND: Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. METHODS: In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. RESULTS: Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. CONCLUSION: This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.
Assuntos
Poluentes Atmosféricos/toxicidade , Brônquios/efeitos dos fármacos , Exposição Ambiental , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Paládio/toxicidade , Brônquios/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Mucosa/efeitos dos fármacos , Mucosa/metabolismoRESUMO
Mdm2 is an oncoprotein interacting with p53 and maintaining low p53 levels in unstressed cells. Here we investigated the effect of genotoxic compounds on Mdm2 phosphorylation levels. Employing the Mdm2 2A10 antibody and phosphatase treatment we found that Mdm2 accumulated in HepG2 cells when exposed to low concentrations of genotoxic compounds such as mitomycin C, etoposide, 5-fluorouracil, and benzo[a]pyrene (BP). The low-dose responses were not accompanied by p53 accumulation and the effect of low concentrations of BP on Mdm2 was not affected by small interfering RNA for p53. In human lymphoblasts 10nM BP induced an Mdm2 response. Low concentrations of BP also induced binding of Mdm2 to chromatin in HepG2 cells, but no p53 binding or H2AX phosphorylation. The more mutagenic dibenzo[a,l]pyrene as well as higher BP concentrations instead induced gammaH2AX and p53 Ser15 association with chromatin. Acrolein potentiated the effect of BP on p53 stabilization and chromatin binding. Taken together, these data suggest that (1) Mdm2 is a sensitive biomarker for certain types of genotoxicity, and (2) that polycyclic aromatic hydrocarbons-induced Mdm2 binding to chromatin reflects repairable damage, whereas chromatin binding of p53 Ser15 and gammaH2AX indicates more persistent DNA damage. The analysis of Mdm2 and related endpoints might be useful for evaluating mutagenic potentials of DNA damages. It is suggested that patterns documented here can be used for separating BP doses that induce readily repaired DNA adducts from doses that overwhelm this capacity.
Assuntos
Benzo(a)pireno/toxicidade , Benzopirenos/toxicidade , Carcinógenos/toxicidade , Mutagênicos/toxicidade , Proteínas Proto-Oncogênicas c-mdm2/genética , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Dano ao DNA , DNA de Neoplasias/análise , DNA de Neoplasias/efeitos dos fármacos , Relação Dose-Resposta a Droga , Marcadores Genéticos , Humanos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno/genética , TransfecçãoRESUMO
Mdm2 inactivates the tumor suppressor p53 and Akt has been shown to be a major activator of Mdm2 in many cell types. We have investigated the regulation of Mdm2 in hepatocytes. We found that growth factor-induced Ser-166 phosphorylation of Mdm2 was inhibited by the MEK inhibitors U0126 and PD98059 in HepG2 cells and in a rat liver cell line, TRL 1215. Also, bile acids and oxidative stress induced phosphorylation of Mdm2 at Ser-166 by an apparently MEK-ERK-dependent mechanism. In contrast, Ser-166 phosphorylation of Mdm2 in lung cells was mediated by Akt. Further studies revealed that phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin induced phosphorylated ERK Tyr-204 and pMdm2 Ser-166 phosphorylations in hepatocytes in culture and in rat hepatocytes in vivo. In HepG2 cells, this effect was inhibited by U0126 and PD98059. LY294002 also reduced the level of pRaf Ser-259. Furthermore, we have shown that myr-Akt-induced overexpression of pAkt suppressed the levels of pMdm2 Ser-166 in hepatocytes. These data indicate a reversed relationship between Akt and Mdm2 in hepatocytes and suggest that Akt is a negative regulator of Raf-MEK-ERK-Mdm2 in this cell type. Ser-166 phosphorylation of Mdm2 has been shown to increase its ubiquitin ligase activity and increase p53 degradation, and our data indicated an attenuated p53 response to DNA damage in hepatocytes exhibiting high levels of pMdm2 Ser-166. Taken together, our data indicate that Mdm2 phosphorylation is regulated via MEK-ERK in hepatocytes. This Mdm2 signaling might be important for the regeneration of hepatocytes after centrilobular cell death.