Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717061

RESUMO

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Assuntos
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulação da Expressão Gênica de Plantas , Hibridização Genética
2.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
3.
Plant Physiol ; 194(3): 1304-1322, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37394947

RESUMO

Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal , Mudança Climática , Edição de Genes
4.
Hortic Res ; 10(8): uhad144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575656

RESUMO

Apple (Malus[Formula: see text]domestica) is a popular temperate fruit crop worldwide. However, its growth, productivity, and quality are often adversely affected by abiotic stresses such as drought, extreme temperature, and high salinity. Due to the long juvenile phase and highly heterozygous genome, the conventional breeding approaches for stress-tolerant cultivars are time-consuming and resource-intensive. These issues may be resolved by feasible molecular breeding techniques for apples, such as gene editing and marker-assisted selection. Therefore, it is necessary to acquire a more comprehensive comprehension of the molecular mechanisms underpinning apples' response to abiotic stress. In this review, we summarize the latest research progress in the molecular response of apples to abiotic stressors, including the gene expression regulation, protein modifications, and epigenetic modifications. We also provide updates on new approaches for improving apple abiotic stress tolerance, while discussing current challenges and future perspectives for apple molecular breeding.

5.
Front Plant Sci ; 14: 1111110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123849

RESUMO

Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.

6.
Plant Physiol ; 192(3): 1659-1665, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37148289
7.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978848

RESUMO

Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.

8.
Hortic Res ; 10(1): uhac239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643755

RESUMO

Apple (Malus) and pear (Pyrus) are economically important fruit crops well known for their unique textures, flavours, and nutritional qualities. Both genera are characterised by a distinct pattern of secondary metabolites, which directly affect not only resistance to certain diseases, but also have significant impacts on the flavour and nutritional value of the fruit. The identical chromosome numbers, similar genome size, and their recent divergence date, together with DNA markers have shown that apple and pear genomes are highly co-linear. This study utilized comparative genomic approaches, including simple sequence repeats, high resolution single nucleotide polymorphism melting analysis, and single nucleotide polymorphism chip analysis to identify genetic differences among hybrids of Malus and Pyrus, and F2 offspring. This research has demonstrated and validated that these three marker types, along with metabolomics analysis are very powerful tools to detect and confirm hybridity of progeny derived from crosses between apple and pear in both cross directions. Furthermore, this work analysed the genus-specific metabolite patterns and the resistance to fire blight (Erwinia amylovora) in progeny. The findings of this work will enhance and accelerate the breeding of novel tree fruit crops that benefit producers and consumers, by enabling marker assisted selection of desired traits introgressed between pear and apple.

9.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674493

RESUMO

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal/métodos , Genoma de Planta , Genômica
10.
Plant J ; 113(1): 92-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401738

RESUMO

Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Sistemas CRISPR-Cas , Florizina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Edição de Genes/métodos
11.
Front Plant Sci ; 13: 1078931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531381

RESUMO

The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.

12.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292581

RESUMO

The 52 members of the Teosinte-Branched 1/Cycloidea/Proliferating Cell Factors (TCP) Transcription Factor gene family in Malus × domestica (M. × domestica) were identified in 2014 on the first genome assembly, which was released in 2010. In 2017, a higher quality genome assembly for apple was released and is now considered to be the reference genome. Moreover, as in several other species, the identified TCP genes were named based on the relative position of the genes on the chromosomes. The present work consists of an update of the TCP gene family based on the latest genome assembly of M. × domestica. Compared to the previous classification, the number of TCP genes decreased from 52 to 40 as a result of the addition of three sequences and the deduction of 15. An analysis of the intragenic identity led to the identification of 15 pairs of orthologs, shedding light on the forces that shaped the evolution of this gene family. Furthermore, a revised nomenclature system is proposed that is based both on the intragenic identity and the homology with Arabidopsis thaliana (A. thaliana) TCPs in an effort to set a common standard for the TCP classification that will facilitate any future interspecific analysis.


Assuntos
Arabidopsis , Malus , Malus/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
13.
Front Plant Sci ; 13: 878001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656017

RESUMO

Epidermal Patterning Factor Like 9 (EPFL9), also known as STOMAGEN, is a cysteine-rich peptide that induces stomata formation in vascular plants, acting antagonistically to other epidermal patterning factors (EPF1, EPF2). In grapevine there are two EPFL9 genes, EPFL9-1 and EPFL9-2 sharing 82% identity at protein level in the mature functional C-terminal domain. In this study, CRISPR/Cas9 system was applied to functionally characterize VvEPFL9-1 in 'Sugraone', a highly transformable genotype. A set of plants, regenerated after gene transfer in embryogenic calli via Agrobacterium tumefaciens, were selected for evaluation. For many lines, the editing profile in the target site displayed a range of mutations mainly causing frameshift in the coding sequence or affecting the second cysteine residue. The analysis of stomata density revealed that in edited plants the number of stomata was significantly reduced compared to control, demonstrating for the first time the role of EPFL9 in a perennial fruit crop. Three edited lines were then assessed for growth, photosynthesis, stomatal conductance, and water use efficiency in experiments carried out at different environmental conditions. Intrinsic water-use efficiency was improved in edited lines compared to control, indicating possible advantages in reducing stomatal density under future environmental drier scenarios. Our results show the potential of manipulating stomatal density for optimizing grapevine adaptation under changing climate conditions.

14.
New Phytol ; 234(4): 1294-1314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246985

RESUMO

Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.


Assuntos
Secas , Malus , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Lignina , Malus/genética , Estresse Oxidativo , Melhoramento Vegetal , Estabilidade de RNA , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem , Transcriptoma/genética
16.
Front Plant Sci ; 13: 1072765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589107

RESUMO

Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus × domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. × domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species.

17.
Hortic Res ; 8(1): 204, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465763

RESUMO

Fire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). The interspecies transfer of PRRs represents a promising strategy to engineer broad-spectrum and durable disease resistance in crops. EFR, the Arabidopsis thaliana PRR for the PAMP elf18 derived from the elongation factor thermal unstable (EF-Tu) proved to be effective in improving bacterial resistance when expressed into Solanaceae and other plant species. In this study, we tested whether EFR can affect the interaction of apple with E. amylovora by its ectopic expression in the susceptible apple rootstock M.26. Stable EFR expression led to the activation of PAMP-triggered immune response in apple leaves upon treatment with supernatant of E. amylovora, as measured by the production of reactive oxygen species and the induction of known defense genes. The amount of tissue necrosis associated with E. amylovora infection was significantly reduced in the EFR transgenic rootstock compared to the wild-type. Our results show that the expression of EFR in apple rootstock may be a valuable biotechnology strategy to improve the resistance of apple to fire blight.

18.
Front Plant Sci ; 12: 667133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959143

RESUMO

Malus ×arnoldiana accession MAL0004 has been found to be resistant to moderately and highly virulent strains of the fire blight causal pathogen - the Gram-negative bacterium, Erwinia amylovora. Genetic analyses with an F1 segregating population derived from crossing the highly susceptible apple cultivar 'Idared' and MAL0004 led to the detection and mapping of the fire blight resistance locus of M. ×arnoldiana to linkage group (LG)12 (FB_Mar12). FB_Mar12 mapped at the distal end of LG12 below the apple SSR Hi07f01 in an interval of approximately 6 cM (Centimorgan), where both the fire blight resistance loci of M. floribunda 821 and 'Evereste' were located. We fine mapped the region containing FB_Mar12 using 892 progenies. Mining of the region of interest (ROI) on the 'Golden Delicious' doubled haploid genome (GDDH13) identified the presence of 2.3 Mb (megabases) in the homologous region. Of 40 primer pairs designed within this region, 20 were polymorphic and nine were mapped, leading to the identification of 24 significant recombinant individuals whose phenotypes were informative in determining the precise position of the locus within a 0.57 cM interval. Analyses of tightly linked marker sequences on the M. baccata draft genome revealed scaffolds of interest putatively harboring the resistance loci of M. ×arnoldiana, a hybrid between M. baccata and M. floribunda. Open reading frame (ORF) analyses led to the prediction of first fire blight resistance candidate genes with serine/threonine kinase and leucine-rich repeat domains, including homologs of previously identified 'Evereste' candidate genes. We discuss the implications of these results on breeding for resistance to fire blight.

19.
Plant Physiol ; 185(4): 1924-1942, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793944

RESUMO

Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2-MdMYB88/MdMYB124-MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition.


Assuntos
Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA